
Finding the largest eigenvalues of a real symmetric matrix, and corre-
sponding eigenvectors

Nadav Har’El

Department of Mathematics
Technion − Israel Institute of Technology

Haifa 32000, Israel
E-Mail: nyh@gauss.technion.ac.il

ABSTRACT

This report describes my solution to the problem of finding the largest eigenvalues
of a real symmetric matrix, and their corresponding eigenvectors, without finding all the
eigenvalues of the given matrix.

1. Intr oduction.

Many problems require finding only a small part of the eigenvalues and eigenvectors of a large real
symmetric matrix. For such problems, finding all the eigenvectors and eigenvalues, with algorithms such as
Jacobi, or the QL method (cf. [NRC]), may be time consuming and wasteful. An example of such a prob-
lem is the Karhunen-Loeve expansion in pattern recognition: Given an ensemble of images, let say faces,
one wants to find an optimal base for the vector space of images of the given size. The base has to be opti-
mal in the sense that when an image similar to the ones in the ensemble (such as another face) is repre-
sented in that base, we can keep only, say, the first 40 base elements, and drop the others, while the error
induced by that action is relatively small. The optimal base also has to be orthonormal, so representing an
image in that base can be easily done. To find that optimal base, one has to define a certain real symmetric
matrix, whose eigenvectors are the required base, where the most important vectors are the ones corre-
sponding to the largest eigenvalues, and the ones corresponding to small eigenvalues can be dropped.For a
more complete explanation of this problem see [KL1] and [KL2]. Another problem requiring only part of
the eigenvalues and eigenvectors has to do with solving differential equations, which I will not get into in
this report.

2. Thebasic idea of the algorithm

The basic idea of the algorithm is as follows: First we convert the given symmetric matrix to a similar
tridiagonal matrix (i.e. has nonzero elements only on the diagonal and sub-diagonals), using theHouse-
holder algorithm (see below). We also get the appropriate transformation matrix.Now that we have
reduced our problem to real symmetric tridiagonal matrices, we use aSturm Sequencesbased algorithm
(see below) to find theN largest eigenvalues, and their corresponding (orthonormal) eigenvectors, of the
tridiagonal matrix. Finally, we use the transformation matrix to convert these eigenvectors to the ones of the
original matrix. The orthonormality of the eigenvectors are preserved by this conversion, since the transfor-
mation matrix is orthogonal.

3. TheHouseholder algorithm

This section describes the Householder method of reduction of a symmetric matrix to tridiagonal
form, as defined in [NRC]. The following section is an extract from [NRC], pages 368-372.

The Householder algorithm reduces ann × n symmetric matrix A to tridiagonal form byn − 2
orthogonal transformations. Each transformation annihilates the required part of a whole column and
whole corresponding row. The basic ingredient is a Householder matrixP, which has the form

-2-

P = I − 2wwT (1)

wherew is a real vector with |w|2 = 1. (In the present notation, theouteror matrix product of two vectors,a
and b is written abT , while the inner or scalar product of the vectors is written asaT b.) The matrixP is
orthogonal, because

P2 = (1 − 2wwT)(1 − 2wwT) = 1 − 4wwT + 4w(wT w)wT = 1 (2)

ThereforeP = P−1. But PT = P, and soPT = P−1, proving orthogonality.

RewriteP as

P = 1 −
uuT

H
, (3)

where the scalar H is

H ≡
1

2
|u|2 (4)

andu can now be any vector. Supposex is the vector composed of the first column of A. Choose

u = x ± |x|e1 (5)

wheree1 is the unit vector (1, 0,. . . , 0)T , and the choice of signs will be made later. Then

Px = x −
u

H
(x ± |x|e1)T x = x −

2u(|x|2 ± |x|x1)

2|x|2 ± 2|x|x1
= x − u = − ± e1 (6)

This shows that the Householder matrixP acts on a given vector x to zero all its elements except the first
one.

To reduce a symmetric matrix A to tridiagonal form, we choose the vector x for the first Householder
matrix to be the lowern − 1 elements of the first column. Then the the lowern − 2 elements will be zeroed:

P1A =

1

0

0
. . .

0

0 0

(n−1)P1

. . . 0

⋅

a11

a21

a31

. . .

an1

a12 a13

*

. . . a1n

=

a11

k

0
. . .

0

a12 a13

*

. . . a1n

(7)

Here we have written the matrices in partitioned form, with(n−1)P denoting a Householder matrix
with dimensions (n − 1) × (n − 1), and* denoting an irrelevant part of the matrix. The quantityk is simply
plus or minus the magnitude of the vector (a21, . . . ,an1)T .

The complete orthogonal transformation is now

A′ = PAP =

a11

k

0
. . .

0

k 0

*

. . . 0

(8)

Now choose the vector x for the second Householder matrix to be the bottomn − 2 elements of the
second column, and from it construct

-3-

P2 ≡

1

0

0
. . .

0

0

1

0
. . .

0

0

0

. . .

. . .

(n−2)P2

0

0

(9)

The identity block in the upper left corner ofP2 insures that the tridiagonalization achieved in the first step
will not be spoiled by this one while the (n − 2)-dimensional Householder matrix at the lower corner ofP2

creates one additional row and column of the tridiagonal output.Clearly, a sequence ofn − 2 such transfor-
mations will reduce the matrix A to tridiagonal form.

Instead of actually carrying out the matrix multiplications inPAP, we compute a vector

p ≡
Au

H
(10)

Then

AP = A(1 −
uuT

H
) = A − puT

A′ = PAP = A − puT − upT + 2KuuT

where the scalar K is defined by

K =
uT p

2H
(11)

If we write

q ≡ p − Ku (12)

then we have

A′ = A − quT − uqT (13)

This is the computationally useful formula.

Following Wilkinson and Reinsch, the routine for Householder reduction used by the algorithm
described in this document actually starts in thenth column of A, not the first as in the explanation above.
In detail, the equations are as follows: At stagem (m = 1, 2, . . . ,n − 2) the vectoru has the form

uT = (ai1, . . . ,ai ,i−2, ai ,i−1 ± √ σ , 0, . . . , 0) (14)

Here

i ≡ n − m + 1 = n, n − 1, . . . , 3 (15)

and the quantityσ (|x|2 in our earlier notation) is

σ = (ai1)2 + . . . + (ai ,i−1)2 (16)

We choose the sign ofσ in (9) to be the same as the sign ofai ,i−1 to lessen roundoff error.

Variables are thus computed in the following order:σ , u, H , p, K , q, A′. At any stagem, A is tridiag-
onal in it’s last m-1 rows and columns.

If the eigenvectors of the final tridiagonal matrix are found, then the eigenvectors of A can be
obtained by applying the accumulated transformation

Q = P1P2
. . .Pn−2 (17)

to those eigenvectors. We therefore formQ by recursion after all theP’s hav ebeen determined:

Qn−2 = Pn−2

Q j = P jQ j+1, j = n − 3, . . . , 1, (18)

-4-

Q = Q1

It has been shown that the Householder algorithm described above, as implemented In the routine I
use, has the complexity of about 4/3n3 at the limit of largen.

4. TheSturm sequence algorithm

The following section describes the algorithm of finding the greatest eigenvalues of an irreducible
real symmetric tridiagonal matrix. An irreducible tridiagonal matrix is a tridiagonal matrix with no zeros on
the subdiagonal. See [INA], page 281 for farther discussion of Sturm Sequences and Bisection Methods.

Let p(x) be a polynomial of degreen,

p(x) = a0xn + a1xn−1 + . . . + an , a0 ≠ 0.

It is possible to determine the number of real roots ofp(x) in a specified region by examining the number
of sign changesw(a) for certain pointsx = a of a sequence of polynomialspi (x) , i = 0, 1, . . . ,m, of
descending degrees. Such a sign change happens whenever the sign of a polynomial value differs from that
of its successor. Furthermore, ifpi (a) = 0, then this entry is to be removed from the sequence of polyno-
mial values before the sign changes are counted. Suitable sequences of polynomials are so calledSturm
Sequences.
Definition. The sequence

p(x) = p0(x), p1(x), . . . ,pm(x)

of real polynomials is a Sturm sequence for the polynomialp(x) if:

(a) All real roots ofp0(x) are simple.

(b) signp1(ζ) = −signp0′(ζ) if ζ is a real root ofp0(x).

(c) For i = 1, 2, . . . ,m − 1, pi+1(ζ)pi−1(ζ) < 0 if ζ is a real root ofpi (x).

(d) Thelast polynomialpm(x) has no real roots.

For such Sturm sequences we have the following
Theorem. The number of real roots ofp(x) ≡ p0(x) in the interval a ≤ x < b equalsw(b) − w(a), where
w(x) is the number of sign changes of a Sturm sequence

p0(x), . . . ,pm(x)

at location x.
See proof at [INA].

An important use of Sturm sequences, and indeed what I use in the algorithm I present in this report,
is in bisection methodsfor determining the eigenvalues of real symmetric matrices which are tridiagonal.
Recall the characteristic polynomialspi (x) of the principal minor formed by the first i rows and columns of
the matrix (J − xI), which, as can be seen, satisfy the recursion

p0(x) ≡ 1, (1)

p1(x) ≡ α1 − x,

pi (x) ≡ (α i − x)pi−1(x) − β i
2 pi−2(x), i = 2, 3, . . . ,n.

Whereα1, . . . ,α n are the diagonal of J, andβ2, . . . ,β n are the subdiagonal. The key observation is that the
polynomials

pn(x), pn−1(x), . . . ,p0(x)

are a Sturm sequence for the characteristic polynomialpn(x) = det(J − xI) (note that the polynomials here
are indexed in the opposite order from before, since this indexing seems more logical for a sequence gener-
ated by iteration), provided the off-diagonal elementsβ i , i = 2, . . . ,n, of the tridiagonal matrix J are all
nonzero. This is proven in [INA]. As a consequence of that proof we derive that pn(x) has simple real
rootsζ1 > ζ2 > . . . > ζ n, and that

-5-

signpn−1(ζ k) = (−1)n+k,

signpn′(ζ k) = (−1)n+k+1 = −signpn−1(ζ k),

for k = 1, 2 ,..., n.

For x = −∞ the Sturm sequence above has the sign pattern

+, +, . . . ,+.

Thus w(−∞) = 0. By the previous theorem,w(η) indicates the number of rootsζ of pn(x) with ζ < η:
w(η) ≥ n + 1 − i holds if and only ifζ i < η.

The bisection method for determining thei th root ζ i of pn(x) (ζ1 > ζ2 > . . . > ζ n) now is as follows.
Start with an interval [a0, b0] which is known to containζ1; e.g., chooseb0 > ζ1, a0 < ζ n. This can be done
by starting with [−1, 1] and increasing the bounds if not all the roots are between them (i.e. increase bounds
until w(a0) = 0 and w(b0) = n). Thendivide this interval at its midpoint and check by means of the Sturm
sequence which of the two subintervals containsζ i . The subinterval which containsζ i is again divided, and
so on. More precisely, we form for j = 0, 1, 2, . . .

u j ≡
(a j + b j)

2
,

a j+1 ≡

a j if w(η j) ≥ n + 1 − i ,

η j if w(η j) < n + 1 − i

b j+1 ≡

η j if w(η j) ≥ n + 1 − i ,

b j if w(η j) < n + 1 − i

The quantitiesa j increase, and the quantitiesb j decrease, to the desired rootζ i . The convergence process is
linear with convergence rate 0.5. This method for determining the roots of the characteristic polynomial is
relatively slow, but very accurate. It also has the feature, which makes it useful for our algorithm, that each
root can be determined independently of the others.
Remember that we find this way only the eigenvalues of an irreducible tridiagonal matrix - part of the given
tridiagonal matrix. See next sections for the algorithm to find the greatest eigenvalues of the whole matrix.

There is a problem with the algorithm mentioned above. The polynomials in (1), when evaluated at a
certain pointx, tend to grow large as the matrix grows larger (for example, for aN × N matrix, the last
polynomial is of degreeN. This causes problems on computers, since numbers of them have limited size,
and numbers bigger than some number (about 10308 on a Sun computer) are treated like infinity, therefore
no computations are possible). So, given a point x, we seek a way of finding a different sequence of values,
q0, . . . ,qn instead ofp0(x), . . . ,pn(x), which have the same signs, but low absolute values. This can be
done using two methods I shall now describe:

4.1. Theadaptive smoothing method

Let us look for asmoothing sequenceσ i of strictly positive numbers, which we will apply in the fol-
lowing manner:

q0 ≡ p0(x) (2)

q1 ≡ p1(x)σ1

q2 ≡ p2(x)σ1σ2

qi ≡ pi (x)σ1σ2
. . .σ i , i = 2, 3, . . . ,n.

We want the smoothing sequence to be such that eachqi will have the absolute value of 1, or 0. We shall
then use theqi sequence, instead of thepi (x) sequence, which is possible since they hav ethe same signs,

sinceσ i are strictly positive. We start out by settingσ1 to
1

|p1|
. Then, as obvious from (2),q1 is 0, 1, or−1.

-6-

Now, let say that we have foundq0, . . . ,qi−1, and we are seekingqi . By (1), we know that

pi (x) ≡ (α i − x)pi−1(x) − β i
2 pi−2(x)

So that

qi ≡ pi (x)σ1σ2
. . .σ i = σ1σ1

. . .σ i ⋅ ((α i − x)pi−1(x) − β i
2 pi−2(x))

= σ i ⋅ ((α i − x)qi−1 − β i
2qi−2σ i−1)

We now define

σ i ≡
1

|(α i − x)qi−1 − β i
2qi−2σ i−1|

Note that if the denominator has the value of zero, we setσ i to 1. Now we hav eqi which can be only 1,−1
or 0.

This method of smoothing the sequence is very good, and if fact works for all matrices I have tried.
We shall now giv e an alternative smoothing method which makes the whole Sturm sequence algorithm
about 30% faster, but unfortunately does not work good enough for very large (about 400× 400) matrices.
Note that one of these smoothing methodsmustbe used, since without them the Sturm sequence algorithm
will fail even for relatively small matrices.

4.2. Thepower smoothing method

This method also works by definingqi based onpi (x) but does not adapt the smoothing value - it has

a constant smoothing value which isσ =
1

|x|
, and theqi are defined as follows:

q0 ≡ p0(x)

q1 ≡ p1(x)σ

q2 ≡ p2(x)σ 2

qi ≡ pi (x)σ i , i = 3, . . . ,n.

This method works for modest sized matrices (less then about 400× 400) since, ideally, a nth degree poly-
nomial evaluated at pointx divided by xn should be anice number. We say ideally, since the polynomial
coefficients themselves can grow very large (remember: we never actually find those coefficients - we only
find the values at the pointx by recursion) rendering thepower smoothingmethod useless. This method has
problems with large matrices (about 400× 400), and may also not work very well with certain smaller
matrices

4.3. Choosingthe smoothing method

The routines I have written support both kinds of smoothing, and it is up to the user to decide which
one to use. I would recommend for users who want to find eigenvalues or eigenvectors of a matrix of size
300× 300 or smaller to try the power smoothing method, and if it fails (reports errors while finding eigen-
vectors for the incorrect eigenvalues it found) try the adaptive smoothing method. If you want to find eigen-
values and eigenvectors of a larger matrix, or want to take no risks of finding incorrect eigenvalues, then use
the adaptive smoothing method. Remember that using the adaptive smoothing method makes the Sturm
sequence part of the algorithm about 30% slower, but this is not real problem in large matrices, since the
Householder overhead dominates the running time.

5. Finding eigenvectors by inverse iteration

The following section discusses the problem of finding an eigenvector corresponding to a given
eigenvalue of an irreducible matrix. The algorithm is outlined in [NRC], page 394.

-7-

We first have to note that because of the discussion in the previous section, we have come to the con-
clusion that the characteristic polynomial of an irreducible tridiagonal real symmetric matrix has only real
roots, and what is more important - all roots are simple. That saves us the trouble of looking for more than
one linearly independent vectors. Also, different eigenvectors of such a matrix are automatically orthogo-
nal, as they correspond to different eigenvalues.

The basic idea behind inverse iteration is quite simple. Lety be the solution of the linear system

(A − τ I)y = b (1)

where b is a random vector andτ is close to some eigenvalue of A. Then the solutiony will be close to the
eigenvector corresponding toτ . The procedure can be iterated: replaceb by y and solve for the new y,
which will be even closer to the true eigenvector. Note that ifτ is too accurate, then equation (1) should not
have a solution, so we changeτ a little by adding some very small constant to it, such as 10−14. Note that
this causes the algorithm to have problems if two eigenvalues are about this close to each other, but that
should almost never occur in practical uses (of course you can easily find a matrix which causes this prob-
lem, but typical matrices will not cause this problem).

We can see why this works by expanding bothy andb as linear combinations of the eigenvectors x j

of A:

y =
j

Σα j x j b =
j

Σ β j x j (2)

Then (1) gives

j
Σα j (λ j − τ)x j =

j
Σ β j x j (3)

so that

α j =
β j

λ j − τ
(4)

and

y =
j

Σ
β j x j

λ j − τ
(5)

If τ is close toλ n, say, then provided β n is not accidentally too small,y will be approximatelyxn, up to
normalization. Moreover, each iteration of this procedure gives another power ofλ j − τ in the denominator
of (5). Thus the convergence is rapid for well separated eigenvalues (remember that we have already shown
that all eigenvalues are simple).

Suppose at thei th stage of iteration we are solving the equation

(A − λ i I)y = xi (6)

where xi and λ i are our current guesses for the eigenvector and eigenvalue of interest (we shall not be
updatingλ i , since it is already accurate, but a variant of this algorithm also lets you improve eigenvalues
previously found). Sincey of (6) is an improved approximation tox, we normalize it and set

xi+1 =
y

|y|
(7)

These formulas look simple enough, but in practice, the implementation is quite tricky

We begin by choosing a random normalized vector, as the initial guess for the eigenvector, x0. We
then solve (6). If the solving algorithm fails (I will not discuss here the algorithm to solve a tridiagonal sys-
tem of equations, since it is a simple Gaussian elimination for tridiagonal system) then we choose a new
random vector and start again. If the solution of (6) succeeded, we check if |x1 − x0| < ε , whereε is some
tolerance, which I have chosen in my program to be 10−15. If it is i ndeed smaller, then we have found our
eigenvector x1. If not we keep iterating. If after some number of iterations, say 10 iterations, |xi+1 − xi | has
not decreased enough, then we begin again with a new random vector. If, after a new random vector has
been chosen, let say, 3 times, we still did not find an eigenvector, we regretfully have to say that the

-8-

algorithm failed. Thisshould not happen, but, unfortunately, I still have some problems with giant matrices
(about 800x800). (Of course, if you are unlucky enough to get 3 consecutive bad random vectors, then
that’s another problem. However, this seems very unlikely.)

This algorithm the complexity ofO(n3), and it is much less efficient than the QL method (cf. [NRC]).
However, when less then about 25 percent of the eigenvectors are required, this algorithm should be more
efficient.

6. Putting the algorithms together

Now that I have explained all those algorithms, it’s time to put them together for our final algorithm.
Given A - a n × n real symmetric matrix, we want to find it’s s biggest eigenvalues, and respective eigen-
vectors.

We begin by using the Householder algorithm to transform A into a tridiagonal matrix. Call the tridi-
agonal matrixT and the orthogonal transformation matrixP. We can’t proceed with the Sturm sequence
algorithm, and the inverse iteration algorithms because they only work on an irreducible tridiagonal matrix.
So we breakT into square tridiagonal blocksTi , i = 1, . . . ,m, which are irreducible.Note that any eigen-
value of a blockTi is also an eigenvalue of T, and vice versa - each eigenvalue of T is an eigenvalue of
someTi , and if λ is non-simple eigenvalue of degree j of T then there are exactly j blocks with a (simple)
eigenvalue λ . This is obvious from the block structure ofT (the characteristic polynomial ofT is the prod-
uct of the characteristic polynomials ofTi). Also, if we have found an eigenvector ofTi , then to find a cor-
responding eigenvector of T all we have to do is add zeros to the vector to make it line up with the appro-
priate blockTi in the matrix multiplicationTv = λv.

Now we make an array of sizes to remember the eigenvalues. First we find the biggest eigenvalue of
each irreducible blockTi with the Sturm sequence algorithm from section 4, and sort them into the array.
Now, we find the second biggest eigenvalue of each block. We merge them into the array. If the array was
filled with eigenvalues andTi ’s second eigenvalue was smaller then the smallest eigenvalue in the array,
then we can stop looking atTi in the next iteration, since it’s next eigenvalues are even smaller. We also
drop aTi if we have finished getting all it’s eigenvalues. We repeat this process, until we ran out ofTi ’s.
We are left with thes biggest eigenvalues ofT in the array. Now, for each of those eigenvalues we find the
eigenvector corresponding to it, in the appropriate irreducible blockTi . We normalize this vector. We then
add zeros to make it an eigenvector of T. We still have to see that the eigenvectors we get this way are
orthogonal, however this is obvious: Two eigenvectors which were gotten from the same irreducible block
correspond to different eigenvalues, and therefore are automatically orthogonal. Two eigenvectors which
were gotten from different irreducible blocks are obviously orthogonal since their non-zero elements are at
a different place.

Now that we have the s biggest eigenvalues ofT, and their corresponding orthonormal eigenvectors,
all we have to do is to multiply them by the orthogonal transformation matrixP. We then finally have thes
biggest eigenvalues ofA, and their corresponding orthonormal eigenvectors.

7. Performance of the Algorithm

One of the goals of this project was to make the algorithm presented here as fast as possible. If time
was not important, then one can use one of the many generic algorithms floating around which find all the
eigenvalues and eigenvectors, such as the routines implemented in Matlab†: theeig command of Matlab
finds all the eigenvalues and eigenvectors of any matrix. While this may be useful in some cases, it is not
needed in our case, and as we shall see, is much slower than our algorithm when only a part of the eigenval-
ues and eigenvectors are sought. In this section we shall also see examples of the time used by our algo-
rithm as function ofn - the size of the given matrix ands - the number of eigenvalues and eigenvectors
wanted.

All of the following examples were run on tx.technion.ac.il, which is a Sun Sparcstation, with 690MP
CPU (four processors), with the SunOS 4.1.2 operation system (Note that although the computer has four
processors, the current algorithm has no support for parallel execution. An enhancement to the algorithm

† Matlab Copyright (c) The MathWorks, Inc. 1984-1991

-9-

could be to calculate eigenvectors in parallel).

I hav ewritten a program incorporating the algorithm described in this report, and ran an example in
which I find eigenvectors and eigenvalues of some fixed 200× 200 random matrix (i.e. a 200× 200 random
matrix was chosen, and remained fixed through all the following tests). The following table shows the time
it took this program to run, and the time it took matlab to run on the same matrix. The program ’main3’ in
the following table is the program which uses the algorithm described in this report.

Table 1 - a 200× 200 matrix
Program Eigs wanted CPUseconds

200 21.80
50 11.10
30 9.50
20 8.90
10 8.15
0 7.30

main3

Matlab 200 22.00

One can easily see from table 1 that main3 is faster than matlab, even when all 200 eigenvalues and eigen-
vectors are wanted. This is because the algorithm employed by Matlab does not use the fact that the matrix
is symmetric.We can also see from this table how decreasing the number of wanted eigenvalues and eigen-
vectors decreases the time the program takes to run. Asking for only 50 out of the 200 eigenvalues and
eigenvectors decreases the run time to half. Also, by looking at this table we can see that the Householder
routine took 7.3 seconds to run (because finding 0 eigenvalues means only do the Householder routine), and
ev ery eigenvalue and eigenvector wanted took about 0.072 second to find.

The following table shows how does the size of the matrix influence the running time of the algo-
rithm. In the table, all times are in CPU seconds, i.e. the time the computer really worked on the program.
The ’Sturm&Inverse + Convert’ heading specifies the average time it took to find one eigenvalue and corre-
sponding eigenvector of then × n random matrix. The ’Sturm&Inverse’ time includes the Sturm algorithm
to find eigenvalues and the inverse iteration algorithm to find the corresponding eigenvector, and the ’Con-
vert’ time specifies the time of the the matrix multiplication needed to convert the eigenvector to the one of
the original matrix.

Table 2 - run time of parts of the algorithm (in CPU seconds)
Matrix size Householder Sturm&Inverse + Convert

10 0.00 0. 000+ 0. 000= 0. 000
20 0.00 0. 004+ 0. 001= 0. 005
30 0.02 0. 006+ 0. 001= 0. 007
40 0.05 0. 007+ 0. 003= 0. 010
50 0.10 0. 008+ 0. 002= 0. 010
60 0.18 0. 009+ 0. 004= 0. 013
80 0.37 0. 013+ 0. 005= 0. 018

100 0.77 0. 015+ 0. 010= 0. 025
150 2.83 0. 022+ 0. 024= 0. 046
200 7.02 0. 030+ 0. 042= 0. 072
300 29.67 0. 045+ 0. 097= 0. 142
400 111.88 0. 061+ 0. 172= 0. 233
500 167.75 0. 079+ 0. 270= 0. 349
600 344.83 0. 101+ 0. 384= 0. 485
700 555.98 0. 126+ 0. 525= 0. 651
800 989.75 0. 145+ 0. 688= 0. 833

As can be seen quite clearly from this table (for example, compare the time for a 800× 800 matrix to the
time of a 400× 400 matrix), the complexity of the Householder algorithm is nearlyO(n3) for n → ∞, like I
mentioned before.This is really bad for extremely large matrices, but unfortunately it is the best algorithm
available ([NCR] says that the Householder algorithm together with a QL algorithm with implicit shifts is

-10-

the most efficient known technique for findingall the eigenvalues and eigenvectors of a real symmetric
matrix). Fromtable 2 we can also see that the Sturm sequence and inverse iteration algorithms combined
are approximatelyO(n). The conversion of an eigenvector of the tridiagonal matrix to the one of the origi-
nal matrix looks like a simple operation, but unfortunately, as can be seen in table 2, it has the complexity
of O(n2), so for large n, the conversion takes much more time then the Sturm and inverse iteration algo-
rithms! Thisis because the conversion works with the whole matrix, which isn × n, as opposed to working
with a tridiagonal matrix which has only 2n − 1 elements.

We hav ecome to the conclusion, that the whole algorithm isO(n3) whenn is large enough. Because
I said the most efficient algorithm to find eigenvalues and eigenvectors of real symmetric matrices uses the
Householder algorithm, then even the most efficient algorithm must beO(n3). Knowing that we can’t
improve the Householder algorithm, we look for ways to increase the speed of the second part of the algo-
rithm (Sturm sequence bisection, inverse iteration, and matrix multiplication).Suppose, for example, that
we have an × n matrix, and we want to find half its eigenvalues and eigenvectors. Then, we use aO(n2)

algorithm
n

2
times, so overall we get aO(n3) complexity. Improving small details of the algorithm (see

next section for planned improvements) will not make it much faster. We can really make that part of the
algorithm much faster if we are working on a computer with several CPU’s, such as a supercomputer. As
we previously saw, an important benefit of this algorithm is that each eigenvalue and eigenvector can be
found independently of the others. So we can use different processors to find different eigenvalues and their
corresponding eigenvectors. For example, let us say we want to find the 200 biggest eigenvalues of the
800× 800 matrix mentioned in table 2. Using the regular sequential algorithm will take us
989. 75+ 200× 0. 833= 1156. 35seconds. Using 100 CPU’s, each finding two eigenvalues and the two cor-
responding eigenvectors, will take us only 989.75+ 2 * 0. 833 = 991. 416seconds, so we saved 164. 934
seconds. If the matrix is bigger, or we want more eigenvalues and eigenvectors, then the absolute time dif-
ference will be even greater. This way we decrease the running time of the second part of the algorithm to

1

100
of the original time (don’t forget that we still have the O(n3) Householder overhead, which isn’t

decreased by using a computer with several processors. This is because the Householder algorithm is
sequential by nature, and each step of it requires the results of the previous step).

8. Summary

As can be seen from this report, finding the biggest eigenvalues and corresponding eigenvectors can
be a tough job. It is even harder trying to code the algorithm with a computer language, as you run into
many unexpected problems. The most problematic algorithm to code in a machine with finite accuracy are
the inverse iteration algorithm, together with it’s algorithm for solving a tridiagonal system of equations,
and the Sturm sequence algorithm. As I said before, this algorithm is not perfect yet, and runs into trouble
in some cases of giant matrices.

Another thing that can be done to improve the final algorithm is to improve the convergence speed of
the Sturm sequence algorithm. One way to do this is instead of always using the bounds [a0, b0] which are
good for all the eigenvalues, use more accurate bounds: when checking the place of one eigenvalue we
automatically improve our guess on other eigenvalues’ whereabouts. The other, more dramatic, change
would be to completely discard the bisection method, and instead use a newton-related method, which is
perhaps less accurate, but faster then the bisection method.

9. Acknowledgments

The project described in this report was supported by the US-Israel Binational Science Foundation,
under supervision of Prof. Koby Rubinstein, Department of Mathematics, Technion - Israel Institute of
Technology.

I would also like to thank my father, Zvi Har’El, for giving me very useful ideas.

-11-

10. References.

[NRC]
Press, H. W. & Flannery, B. P. & Teukolsky A. T. & Vetterling W. T., Numerical Recipes in C, The
Art of Scientific Computing, Chapter 11. Cambridge University Press

[KL1]
Sirovich, L. & Kirby, M., Low-dimensional procedure for the characterization of human faces, Jour-
nal of the Optical Society of America, March 1987, Vol 4, No. 3, Page 519.

[KL2]
Sirovich, L. & Kirby, M., Application of the Karhunen-Loeve Procedure for the Characterization of
Human Faces, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No 1, Jan-
uary 1990, Page 103.

[INA]
Stoer, J. & Bulirsch, R., Introduction to Numerical Analysis, Chapter 5.6. Springer-Verlag New
York, 1980.

