Finding the largest eigenalues of a real symmetric matrix, and core-
sponding eigenectors

Nadav Har’El

Department of Mathematics
Technion - Israel Institute of Technology
Haifa 32000, Israel
E-Mail: nyh@gauss.technion.ac.il

ABSTRACT

This report describes my solution to the problem of finding thyesireigevalues
of a real symmetric matrix, and their corresponding eiggors, without finding all the
eigervalues of the gien matrix.

1. Introduction.

Marny problems require finding only a small part of the eighres and eigarectors of a large real
symmetric matrix. Br such problems, finding all the eigeators and eigeralues, with algorithms such as
Jacobi, or the QL method (cf. [NRC]), may be time consuming and wastefukakmpée of such a prob-
lem is the Karhunen-Lee epansion in pattern recognition: \@&h an eisemble of images, let sagcks,
one wants to find an optimal base for tleeter space of images of thevgn sze. The base has to be opti-
mal in the sense that when an image similar to the ones in the ensemble (such as another face) is repre-
sented in that base, we can keep osdy, the first 40 base elements, and drop the others, while the error
induced by that action is retetly small. The optimal base also has to be orthonormal, so representing an
image in that base can be easily doreefiid that optimal base, one has to define a certain real symmetric
matrix, whose eigerectors are the required base, where the most important vectors are the ones corre-
sponding to the largest eigetues, and the ones corresponding to small e@ees can be dropped:or a
more completexplanation of this problem see [KL1] and [KL2]. Another problem requiring only part of
the eigemalues and eigarectors has to do with solving differential equations, which | will not get into in
this report.

2. Thebasic idea of the algorithm

The basic idea of the algorithm is as follows: First wevedrihe given symmetric matrix to a similar
tridiagonal matrix (i.e. has nonzero elements only on the diagonal and sub-diagonals), ukiogstie
holder algorithm (see below). @/ dso get the appropriate transformation matriXow that we hae
reduced our problem to real symmetric tridiagonal matrices, we @era Sequencdsased algorithm
(see below) to find th&l largest eigewvelues, and their corresponding (orthonormal) eigetors, of the
tridiagonal matrix. Finallywe wse the transformation matrix to a@n these eigerectors to the ones of the
original matrix. The orthonormality of the eigewtors are preserved by this wersion, since the transfor
mation matrix is orthogonal.

3. TheHouseholder algorithm

This section describes the Householder method of reduction of a symmetric matrix to tridiagonal
form, as defined in [NRC]. The following section is an extract from [NRC], pages 368-372.

The Householder algorithm reduces am n symmetric matrix A to tridiagonal form bp-2
orthogonal transformations. Each transformation annihilates the required part of a whole column and
whole corresponding va The basic ingredient is a Householder maf#jxvhich has the form

P=1-2ww' (1)
wherew is a real vector withw|? = 1. (In the present notation, tbateror matrix product of tw vectors,a
andb is written ab’, while theinner or scalar product of theegtors is written ag'b.) The matrixP is
orthogonal, because

P2 = (1-2ww')(1-2ww" =1 -4ww" +4ww ww' =1 @)

ThereforeP = P2, But PT = P, and soP™ = P2, proving orthogonality.

Rewrite P as

-

uu
P=1-—, 3
v 3)

where the scalar H is
1

H==|uP 4
5 ul (4)

andu can nev be ay vector. Supposex is the vector composed of the first column of A. Choose
u=xz|xle (5)
wheree, is the unit vector (1,0, -,0)T, and the choice of signs will be made lafEnen
2u(IXP £ [xlx) _
2|X|2 + 2|X|x4

This shows that the Householder matPacts on a gien vector x to zero all its elements except the first
one.

u
Px:x—ﬁ(xi|x|e1)Tx:x— —u=-teg (6)

To reduce a symmetric matrix A to tridiagonal form, we choose ¢tov x for the first Householder
matrix to be the lowen — 1 dements of the first column. Then the the lower2 dements will be zeroed:

ol O 0 -+ 0p Ball a2 a3 v alng

0o O Dazl 0O

PA= B 0 (Dp, E[Da?,l * 0

. O... O

] 0 g 0

o 0 B 0
(11 &2 &3 '+ 8mp
Ok O

= g 0 * E (7)

0 0
0o 0

Here we hae written the matrices in partitioned form, with?P denoting a Householder matrix
with dimensionsrf — 1) x (n— 1), and* denoting an irrekant part of the matrix. The quantiyis simply
plus or minus the magnitude of the vec@y(. ..,ay)".

The complete orthogonal transformation is now

[ﬁll k O -.-- 0[|
Ok 0

' = =0 * 0

A =PAP=[0 . (8)
do (]

Now choose the ector x for the second Householder matrix to be the bottoa? dements of the
second column, and from it construct

D1 0 O O[|
oo 1 0 oo
stgo 0 g 9)
o (-2)p
[t 2 O
0o o O

The identity block in the upper left corner Bf insures that the tridiagonalization aclge in the first step
will not be spoiled by this one while the € 2)-dimensional Householder matrix at the lower corndp.of
creates one additionalwoand column of the tridiagonal outpuClearly a £quence oh — 2 such transfor
mations will reduce the matrix A to tridiagonal form.

Instead of actually carrying out the matrix multiplication®#P, we mmpute a vector

Au
=" 10
p="5 (10)
Then
T
AP= A=) = A= pul
A =PAP= A-pu' —up' +2Kuu"
where the scalar K is defined by
-
up
K=— 11
2H (11)
If we write
g p-Ku (12)
then we hae
A=A-qu -uq (13)

This is the computationally useful formula.

Folowing Wilkinson and Reinsch, the routine for Householder reduction used by the algorithm
described in this document actually starts inriflecolumn of A, not the first as in theqganation abee.
In detail, the equations are as follows: At stagém =1, 2, ... n - 2) the vectou has the form

u' =(a,...,& 2 &-1%v0,0,...,0 (14)
Here
i=En-m+l=nn-1,...,3 (15)
and the quantity (|x]? in our earlier notation) is
o=(ay)’+ - +(a-1)° (16)
We dchoose the sign af in (9) to be the same as the sigragt, to lessen roundbérror.

Variables are thus computed in the follog order:o, u, H, p, K, g, A'. At any dagem, A'is tridiag-
onal in it's last m-1 rows and columns.

If the eigemectors of the final tridiagonal matrix are found, then the eiggors of A can be
obtained by applying the accumulated transformation

Q=P1Py---Pyp (17)
to those eigerectors. W therefore formQ by recursion after all thB's havebeen determined:
Qn—z = I:>n—2

Qj:Pij+11j:n_3""’1’ (18)

Q=Q

It has been shown that the Householder algorithm describe®, asomplemented In the routine |
use, has the complexity of about @it the limit of largen.

4. TheSturm sequence algorithm

The following section describes the algorithm of finding the greatestvelges of an irreducible
real symmetric tridiagonal matrix. An irreducible tridiagonal matrix is a tridiagonal matrix with no zeros on
the subdiagonal. See [INA], page 281 for farther discussion of Sturm Sequences and Bisection Methods.

Let p(x) be a plynomial of degrea,
p(x) = apX" +a; X" +---+a,,8, % 0.

It is possible to determine the number of real rootp(a) in a gecified region by examining the number
of sign changesv(a) for certain pointsx = a of a sequence of polynomialg(x),i =0,1,...m, of
descending degrees. Such a sign change happensvehiigesign of a polynomial value @fs from that

of its successoFurthermore, ifp;(a) = 0, then this entry is to be rena from the sequence of polyno-
mial values before the sign changes are counted. Suitable sequences of polynomials are Sturralled
Sequences.

Definition. The sequence

P(X) = Po(X), P1(X), - - - ,Pm(X)
of real polynomials is a Sturm sequence for the polynopfial if:
(@) All real roots ofpy(x) are simple.
(b) signp.(¢) = -signpy'(¢) if is a real root ofy(X).
(c) Fori=1,2,...m-1, pa(Q)pi-1(¢) < 0if is a real root of;(X).
(d) Thelast polynomialp,,(x) has no real roots.

For such Sturm sequences wevhahe following
Theorem. The number of real roots gf(x) = py(X) in the intenal a < x < b equalsw(b) — w(a), where
w(x) is the number of sign changes of a Sturm sequence

pO(X)! v !pm(x)

at location x.
See proof at [INA].

An important use of Sturm sequences, and indeed what | use in the algorithm | present in this report,
is in bisection methodfor determining the eigemlues of real symmetric matrices which are tridiagonal.
Recall the characteristic polynomigdqx) of the principal minor formed by the first iws and columns of
the matrix 0 — xI), which, as can be seen, satisfy the recursion

Po(x) =1, (1)
pi(X) = aq — X,

pi(X) = (@i = X)Pia(¥) = BZpia(X), 1=2,3,...N.

Wherea,, ... ,a, are the diagonal of J, amt}, . . ., B, are the subdiagonal. Thekdsenation is that the
polynomials

pn(x)u pn—l(x)v e va(X)

are a Sturm sequence for the characteristic polynopp) = det@d — xI) (note that the polynomials here
are indeed in the opposite order from before, since this kidg seems more logical for a sequence gener
ated by iteration), provided the off-diagonal elemegts =2, ... n, of the tridiagonal matrix J are all
nonzero. This is pren in [INA]. As a consequence of that proof we derithat p,(x) has simple real
roots¢, >, > --->¢,, and that

sign pp-1(¢i) = ()™,

signpy'(¢k) = (~1)™* = =sign pr4(4i),
fork=1,2,..,n.
For x = —oo0 the Sturm sequence aleohas the sign pattern
ST I 3

Thus w(—o00) = 0. By the previous theoremy(n) indicates the number of roofsof p,(x) with ¢ <n:
w(n) 2 n+1-i holds if and only ii; < .

The bisection method for determining tiferoot ¢; of p,(X) (1> 2 > --- > ¢,) now is as bllows.
Start with an intervaldy, bg] which is known to contaid; e.g., choosdy, > {1, a9 < ¢,,. This can be done
by starting with £1, 1] and increasing the bounds if not all the roots are between them (i.e. increase bounds
until w(ag) = 0 and w(bg) = n). Thendivide this interval at its midpoint and check by means of the Sturm
sequence which of the bnaubintenals containg;. The subinterval which contaids is again divided, and
so on. More preciselyve form forj =0,1, 2, ...
(aj +bj)

=T
_@] if W(l’]])Zn'l'l_l,
aj+1=[| . ;
i if w(z;)<n+1-i

_ D7] if W(I’]J) >n+1-i,

bj+1 =0, . ;
Dbi if win;)<n+1-i

The quantities; increase, and the quantitiesdecrease, to the desired rgptThe cowergence process is
linear with cowergence rate 0.5. This method for determining the roots of the characteristic polynomial is
relatively slow, but very accurate. It also has the feature, which makes it useful for our algorithm, that each
root can be determined independently of the others.
Remember that we find this way only the eiggtues of an irreducible tridiagonal matrix - part of theegi
tridiagonal matrix. See next sections for the algorithm to find the greatestabigsnof the whole matrix.

There is a problem with the algorithm mentionedvab®he polynomials in (1), whervauated at a
certain pointx, tend to grav large as the matrix grows larger (for example, fdl & N matrix, the last
polynomial is of dgreeN. This causes problems on computers, since numbers of theriihded size,
and numbers bigger than some number (abot bd a Sun computer) are treatecklikfinity, therefore
no computations are possible). Swaepgia int X, we ek a way of finding a ddrent sequence ofilues,
do, - - -,0n instead ofpy(Xx), ...,ps(X), which hae the same signs, butvoabsolute values. This can be
done using tw methods | shall no describe:

4.1. Theadaptive snoothing method

Let us look for amoothing sequenesg of strictly positve rumbers, which we will apply in the fol-
lowing manner:

do = Po(X) 7))
01 = pa(X)oy
02 = P2(X)0107

0 = pi(X)oroz---0;, 1=2,3,...1n

We want the smoothing sequence to be such that gaefil have the absolute value of 1, or 0.evghall
then use the; sequence, instead of the(x) sequence, which is possible sinceytlavethe same signs,

sinceg; are strictly positie. We gart out by settingr; to m Then, as obvious from (2j; is O, 1, or-1.
1

Now, let say that we & foundqq, . ..,q-1, and we are seeking;. By (1), we knav that

pi(X) = (@ = X) Pi-1(X) = B piza(X)
So that

0 = pi(X)0102 -+ 0; = 0101 - - 0y Q@i = X) Pica(X) = Bi*Pi-2(X))

= i (@ = X)Gi-1 = Bi*0Ui-201-1)
We row define
_ 1
(@i = X)Gi-1 — Bi%Gi-20i4]

Note that if the denominator has the value of zero, we;getl. Now we haveq; which can be only 151
or 0.

This method of smoothing the sequence is very good, and if fact works for all matrisestidth
We dhall nowv give an alternatie snoothing method which makes the whole Sturm sequence algorithm
about 30% dster but unfortunately does not work good enough for very large (aboux 400) matrices.
Note that one of these smoothing methoustbe used, since without them the Sturm sequence algorithm
will fail even for relatvely small matrices.

Oi

4.2. Thepower smoothing method
This method also works by definigg based orp;(x) but does not adapt the smoothing value - it has

. o1 ,
a wonstant smoothing value whichds= —, and theq; are defined as follows:

x|
Jo = Po(X)

01 = p1(X)o

02 = pz(X)U2

a =p(x)o', i=3,...n

This method works for modest sized matrices (less then abowt4) since, ideallya n' degree poly-
nomial ealuated at pointx divided by x" should be anice number We say ideally since the polynomial
coeficients themselves can gvorery lage (remember: we mer actually find those coefficients - we only
find the values at the poirtby recursion) rendering th@wer smoothingnethod useless. This method has
problems with large matrices (about 40800), and may also not work very well with certain smaller
matrices

4.3. Choosinghe smoothing method

The routines | hae written support both kinds of smoothing, and it is up to the user to decide which
one to use. | would recommend for users wlamtito find eigevelues or eigewvectors of a matrix of size
300x% 300 or smaller to try the power smoothing method, and if it fails (reports errors while finding eigen-
vectors for the incorrect eigedues it found) try the adapt snoothing method. If you want to find eigen-
values and eigerectors of a larger matrix, or want to &ako iisks of finding incorrect eigealues, then use
the adaptie snoothing method. Remember that using the adapthoothing method makes the Sturm
sequence part of the algorithm about 30%vslpbut this is not real problem in large matrices, since the
Householder werhead dominates the running time.

5. Finding eigervectors by inverse iteration

The following section discusses the problem of finding an eggor corresponding to a\gn
eigervalue of an irreducible matrix. The algorithm is outlined in [NRC], page 394.

We first have o note that because of the discussion in the previous section weedme to the con-
clusion that the characteristic polynomial of an irreducible tridiagonal real symmetric matrix has only real
roots, and what is more important - all roots are simple. Thes s he trouble of looking for more than
one linearly independentstors. Also, different eigeactors of such a matrix are automatically orthogo-
nal, as thg correspond to different eigesiues.

The basic idea behindverse iteration is quite simple. Lgtbe the solution of the linear system
(A-7l)y=b 1)

where b is a random vector ands close to some eigealue of A. Then the solutiory will be close to the
eigervector corresponding te. The procedure can be iterated: replacey y and sole for the n&v vy,

which will be even doser to the true eigeactor. Note that ifr is too accurate, then equation (1) should not
have a ®lution, so we change a little by adding someery small constant to it, such as 0 Note that

this causes the algorithm toveaproblems if two e@gernvalues are about this close to each qthet that
should almost ner occur in practical uses (of course you can easily find a matrix which causes this prob-
lem, but typical matrices will not cause this problem).

We an see wi this works by expanding botnandb as linear combinations of the eigeotors x;
of A:

y=ZaJXJ b=Z,BJXJ (2)
j j
Then (1) gves
za’l(/‘]_T)ijz,BJXJ (3)
j j
so that
= _Fi
al Al‘_T (4)
and
_< BiX
= 5
y %AJ —; (5)

If 7 is close tod,, say, then prwoided 3, is not accidentally too smalj; will be approximatelyx,, up ©
normalization. Morewer, each iteration of this procedurevgs another power ofi; — 7 in the denominator
of (5). Thus the corergence is rapid for well separated eiga@nes (remember that we veadready shan
that all eigemalues are simple).

Suppose at thé" stage of iteration we are solving the equation
(A=Aly=x (6)
where x; and A; are our current guesses for the eigetor and eigevelue of interest (we shall not be
updating4;, snce it is already accurate, but a variant of this algorithm also lets youvienpgernvalues
previously found). Sincg of (6) is an impreed gpproximation tox, we rormalize it and set

()

Xi+1 = 75

|yl

These formulas look simple enough, but in practice, the implementation is quite tricky

We kegn by choosing a random normalizedctor as e initial guess for the eigeector, x,. We
then sole (6). If the solving algorithm fails (I will not discuss here the algorithm toesaltidiagonal sys-
tem of equations, since it is a simple Gaussian elimination for tridiagonal system) then we chawse a ne
random vector and startag. If the solution of (6) succeeded, we checlkifH x| < €, wheree is some
tolerance, which | ha chosen in my program to be 1B, If it is indeed smallethen we hae found our
eigervector x;. If not we leep iterating. If after some number of iterations, say 10 iteratiops;-|x;| has
not decreased enough, then we begin again wittwararedom ector If, after a nev random vector has
been chosen, let sag times, we still did not find an eigesctor, we regetfully have o say that the

algorithm filed. Thisshould not happen, but, unfortunatélgtill have ssme problems with giant matrices
(about 80&800). (Ofcourse, if you are unlugkenough to get 3 consecuti bad random vectors, then
that's another problem. Howesr, this seems very unlikely.)

This algorithm the complexity @(n®), and it is much lessfifient than the QL method (cf. [NRC]).
However, when less then about 25 percent of the eigetors are required, this algorithm should be more
efficient.

6. Putting the algorithms together

Now that | hare explained all those algorithms, stime to put them together for our final algorithm.
Given A - anxn real symmetric matrix, we want to findsits biggest eigevelues, and respegt dgen-
vectors.

We kegn by using the Householder algorithm to transform A into a tridiagonal matrix. Call the tridi-
agonal matrixT and the orthogonal transformation matAx We can't proceed with the Sturm sequence
algorithm, and the irerse iteration algorithms becauseyttoaly work on an irreducible tridiagonal matrix.

So we breal into square tridiagonal blocks, i =1, ... m, which are irreducible Note that ap eigen-
value of a blockT; is also an eigesalue of T, and vice versa - each eigatue of T is an eigewaue of
someT;, and if A is non-simple eigeralue of dgreej of T then there arexactly j blocks with a (simple)
eigervalue A. This is obvious from the block structurefthe characteristic polynomial @fis the prod-
uct of the characteristic polynomials). Also, if we hae found an eigerector of T;, then to find a cer
responding eigesector of T all we hae © do is ald zeros to the vector to ek line up with the appro-
priate blocKT; in the matrix multiplicationTv = Av.

Now we make an aray of sizes to remember the eigealues. First we find the biggest eigalue of
each irreducible blocK; with the Sturm sequence algorithm from section 4, and sort them into the array
Now, we find the second biggest eigelue of each block. & merge them into the arrayf the array vas
filled with eigemwalues andT;'s second eigevelue was smaller then the smallest eigdue in the array
then we can stop looking &t in the next iteration, since st'next eigervalues are een snaller We dso
drop aT; if we have finished getting all is dgervalues. W repeat this process, until we ran ouflgs.
We ae left with thes biggest eigevalues ofT in the arrayNow, for each of those eigeglues we find the
eigervector corresponding to it, in the appropriate irreducible blickVe normalize this ector We then
add zeros to makit an égervector of T. We dill have b se that the eigerctors we get this way are
orthogonal, havever this is obvious: Wo d@gernvectors which were gotten from the same irreducible block
correspond to different eigesues, and therefore are automatically orthogonaio &gervectors which
were gotten from diérent irreducible blocks are obviously orthogonal since their non-zero elements are at
a dfferent place.

Now that we hae te s biggest eigevalues of T, and their corresponding orthonormal eigectors,
all we hare 0 do is to multiply them by the orthogonal transformation matixWe then finally hae the s
biggest eigevelues of A, and their corresponding orthonormal eigectors.

7. Performance of the Algorithm

One of the goals of this project was to mdhke algorithm presented here astfas possible. If time
was ot important, then one can use one of theyrgameric algorithms floating around which find all the
eigervalues and eigerectors, such as the routines implemented in Matlabteipeommand of Matlab
finds all the eigeralues and eigarectors of ay matrix. Whilethis may be useful in some cases, it is not
needed in our case, and as we shall see, is mugardloan our algorithm when only a part of the eigen
ues and eigemctors are sought. In this section we shall also see examples of the time used by our algo-
rithm as function oin - the size of the gen matrix ands - the number of eigealues and eigerectors
wanted.

All of the following examples were run on tx.technion.ac.il, which is a Sun Sparcstation, with 690MP
CPU (four processors), with the SunOS 4.1.2 operation system (Note that although the computer has four
processors, the current algorithm has no support for paratielitton. An enhancement to the algorithm

T Matlab Copyright (c) The MathWorks, Inc. 1984-1991

could be to calculate eigesctors in parallel).

| havewritten a program incorporating the algorithm described in this report, and ran an example in
which | find eigewmectors and eigar@lues of some fixed 200200 random matrix (i.e. a 260200 random
matrix was chosen, and remained fixed through all thewoitptests). The following table shows the time
it took this program to run, and the time it took matlab to run on the same matrix. The program 'main3’ in
the following table is the program which uses the algorithm described in this report.

Table 1 - a 200x 200 matrix

Program | Eigswanted | CPUseconds|

200 21.80

50 11.10

main3 30 9.50

20 8.90

10 8.15

0 7.30

Matlab 200 22.00

One can easily see from table 1 that main3 is faster than mattabyleen all 200 eigaralues and eigen-

vectors are wanted. This is because the algorithm employed by Matlab does not asettiat the matrix

is symmetric.We @an also see from this tablewndecreasing the number of wanted eigglies and eigen-

vectors decreases the time the program takes to run. Asking for only 50 out of the 208leigeand
eigervectors decreases the run time to half. Also, by looking at this table we can see that the Householder
routine took 7.3 seconds to run (because finding 0 edygrs means only do the Householder routine), and
evay eigewvaue and eigevector wanted took about 0.072 second to find.

The following table shows modoes the size of the matrix influence the running time of the algo-
rithm. In the table, all times are in CPU seconds, i.e. the time the computer reddgdwn the program.
The 'Sturm&Inverse + Comert’ heading specifies theverage time it took to find one eigatue and corre-
sponding eigerector of then x n random matrix. The 'Sturm&herse’ time includes the Sturm algorithm
to find eigemalues and the werse iteration algorithm to find the corresponding ergetor, and the 'Con-
vert’ time specifies the time of the the matrix multiplication needed teecbthe eigewector to the one of
the original matrix.

Table 2 - run time of parts of the algorithm (in CPU seconds
Matrix size Householder Sturmé&lnverse + Corvert
10 0.00 0. 000+ 0. 000= 0. 000
20 0.00 0. 004+ 0.001= 0. 005
30 0.02 0. 006+ 0.001=0.007
40 0.05 0.007+0.003=0.010
50 0.10 0.008+0.002=0.010
60 0.18 0.009+0.004=0.013
80 0.37 0.013+0.005=0.018
100 0.77 0.015+0.010=0.025
150 2.83 0.022+0.024=0. 046
200 7.02 0.030+0.042=0.072
300 29.67 0.045+0.097=0. 142
400 111.88 0.061+0.172=0.233
500 167.75 0.079+0.270=0. 349
600 344.83 0.101+0.384=0.485
700 555.98 0.126+0.525=0.651
800 989.75 0.145+0.688=0.833

As can be seen quite clearly from this table (faneple, compare the time for a 80800 matrix to the

time of a 400x 400 matrix), the complexity of the Householder algorithm is nedfiy) forn — oo, like |
mentioned beforeThis is really bad for extremely large matrices, but unfortunately it is the best algorithm
awailable ([INCR] says that the Householder algorithm together with a QL algorithm with implicit shifts is

the most efficient known technique for findiali the eigemalues and eigarectors of a real symmetric
matrix). Fromtable 2 we can also see that the Sturm sequence \@ngeiriteration algorithms combined
are approximatelyD(n). The comersion of an eigerector of the tridiagonal matrix to the one of the origi-
nal matrix looks lile a $smple operation, bt unfortunatelyas @n be seen in table 2, it has the comipje
of O(n?), so for lage n, the cowersion takes much more time then the Sturm amerse iteration algo-
rithms! Thisis because the ceersion works with the whole matrix, whichsx n, as gposed to wrking
with a tridiagonal matrix which has only2 1 dements.

We havecome to the conclusion, that the whole algorith®(g®) whenn is large enough. Because
| said the most efficient algorithm to find eigelues and eigerectors of real symmetric matrices uses the
Householder algorithm, therven the most efficient algorithm must f@(n%). Knowing that we cat’
improve the Householder algorithm, we look foays to increase the speed of the second part of the algo-
rithm (Sturm sequence bisectionyérse iteration, and matrix multiplicationsuppose, for example, that
we hae an x n matrix, and we want to find half its eigetues and eigerectors. Then, we use @(n?)

n
algorithm > times, so werall we get aO(n®) complexity Improving small details of the algorithm (see

next section for planned impvements) will not mak it much faster We @an really mak that part of the
algorithm much faster if we areonking on a computer with geral CPU’s, such as a supercomputes

we previously sa&, an important benefit of this algorithm is that each eiglkre and eigevector can be
found independently of the others. So we can uderdiit processors to find different eigdnes and their
corresponding eigeectors. For example, let us say wamw to find the 200 biggest eigatues of the
800x 800 matrix mentioned in table 2. Using thegukar sequential algorithm will tak us

989. 75+ 200x 0. 833= 1156. 35seconds. Using 100 CPU'’s, each finding sgenvalues and the ta cor-
responding eigerectors, will tale us amly 989.75+2 * 0.833=991. 416seconds, so we wal 164. 934
seconds. If the matrix is bigger we want more eigeralues and eigerectors, then the absolute time dif-
ference will be een greater This way we decrease the running time of the second part of the algorithm to

1
100 of the original time (don’forget that we still hee the O(n®) Householder werhead, which isi’

decreased by using a computer witlvesal processors. This is because the Householder algorithm is
sequential by nature, and each step of it requires the results of the previous step).

8. Summary

As can be seen from this report, finding the biggest eajezs and corresponding eigentors can
be a tough joblt is even harder trying to code the algorithm with a computer language, as you run into
mary unexpected problems. The most problematic algorithm to code in a machine with finite w@rarac
the irverse iteration algorithm, together withsitdgorithm for solving a tridiagonal system of equations,
and the Sturm sequence algorithm. As | said before, this algorithm is not perfect yet, and runs into trouble
in some cases of giant matrices.

Another thing that can be done to imypedhe final algorithm is to impr@ the cowergence speed of
the Sturm sequence algorithm. Onaywto do this is instead ofvedys using the boundsy{, by] which are
good for all the eigaralues, use more accurate bounds: when checking the place of onesleigeme
automatically imprage aur guess on other eigaiues’ whereabouts. The othenore dramatic, change
would be to completely discard the bisection method, and instead use a newton-related method, which is
perhaps less accurate, but faster then the bisection method.

9. Acknowledgments

The project described in this reporasvsupported by the US-Israel Binational ScienmenBation,
under supervision of Prof. Koby Rubinstein, Department of Mathematchnion - Israel Institute of
Technology.

| would also lile to hank my fatherzvi Har’El, for giving me very useful ideas.

10. Refeences.

[NRC]
Press, H. W& Flannery B. P. & Teukolsky A. T. & Vetterling W. T., Numerical Recipes in C, The
Art of Scientific Computinghapter 11. Cambridge Urersity Press

[KL1]
Sirovich, L. & Kirby, M., Low-dimensional mcedue for the dharacterization of human facedour-
nal of the Optical Society of America, March 1987, Vol 4, No. 3, Page 519.

[KL2]
Sirovich, L. & Kirby, M., Application of the Karhunen-Lwe Piocedue for the Characterization of
Human Rces IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 12, No 1, Jan-
uary 1990, Page 103.

[INA]
Stoer J. & Bulirsch, R.,Introduction to Numerical Analysihapter 5.6. Springer-\érlag Nev
York, 1980.

