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ABSTRACT
Direct device assignment enhances the performance of guest
virtual machines by allowing them to communicate with
I/O devices without host involvement. But even with device
assignment, guests are still unable to approach bare-metal
performance, because the host intercepts all interrupts, in-
cluding those interrupts generated by assigned devices to
signal to guests the completion of their I/O requests. The
host involvement induces multiple unwarranted guest/host
context switches, which significantly hamper the performance
of I/O intensive workloads. To solve this problem, we present
ELI (ExitLess Interrupts), a software-only approach for han-
dling interrupts within guest virtual machines directly and
securely. By removing the host from the interrupt handling
path, ELI manages to improve the throughput and latency
of unmodified, untrusted guests by 1.3x–1.6x, allowing them
to reach 97%–100% of bare-metal performance even for the
most demanding I/O-intensive workloads.

1. INTRODUCTION
I/O activity is a dominant factor in the performance of vir-

tualized environments [32,33,47,51], motivating direct device
assignment where the host assigns physical I/O devices di-
rectly to guest virtual machines. Examples of such devices in-
clude disk controllers, network cards, and GPUs. Direct device
assignment provides superior performance relative to alterna-
tive I/O virtualization approaches, because it almost entirely
removes the host from the guest’s I/O path. Without direct
device assignment, I/O-intensive workloads might suffer un-
acceptable performance degradation [29,32,37,51,53]. Still,
direct access does not allow I/O-intensive workloads to ap-
proach bare-metal (non-virtual) performance [9,15,26,31,51],
limiting it to 60%–65% of the optimum by our measure-
ments. We find that nearly the entire performance difference
is induced by interrupts of assigned devices.

I/O devices generate interrupts to asynchronously com-
municate to the CPU the completion of I/O operations. In
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Figure 1: Exits during interrupt handling

virtualized settings, each device interrupt triggers a costly
exit [2,9,26], causing the guest to be suspended and the host
to be resumed, regardless of whether or not the device is as-
signed. The host first signals to the hardware the completion
of the physical interrupt as mandated by the x86 specifica-
tion. It then injects a corresponding (virtual) interrupt to
the guest and resumes the guest’s execution. The guest in
turn handles the virtual interrupt and, like the host, signals
completion, believing that it directly interacts with the hard-
ware. This action triggers yet another exit, prompting the
host to emulate the completion of the virtual interrupt and
to resume the guest again. The chain of events for handling
interrupts is illustrated in Figure 1(a).

The guest/host context switches caused by interrupts in-
duce a tolerable overhead price for non-I/O-intensive work-
loads, a fact that allowed some previous virtualization studies
to claim they achieved bare-metal performance [7, 27, 29].
But our measurements indicate that this overhead quickly
ceases to be tolerable, adversely affecting guests that re-
quire throughput of as little as 50 Mbps. Notably, many
previous studies improved virtual I/O by relaxing protec-
tion [6,24,27] or by modifying guests [7,29], whereas we focus
on the most challenging virtualization scenario of guests that
are untrusted and unmodified.

Many previous studies identified interrupts as a major
source of overhead [9, 28,49], and many proposed techniques
to reduce it, both in bare-metal settings [17,43,45,54] and
in virtualized settings [4, 15, 26, 31, 51]. In principle, it is
possible to tune devices and their drivers to generate fewer
interrupts, thereby reducing the related overhead. But doing
so in practice is far from trivial [8,44] and can adversely affect



both latency and throughput. We survey these approaches
and contrast them with ours in Section 2.

Our approach rests on the observation that the high inter-
rupt rates experienced by a core running an I/O-intensive
guest are mostly generated by devices assigned to the guest.
Indeed, we measure rates of over 150K physical interrupts
per second, even while employing standard techniques to
reduce the number of interrupts, such as interrupt coalesc-
ing [4, 43, 54] and hybrid polling [17, 45]. As noted, the re-
sulting guest/host context switches are nearly exclusively
responsible for the inferior performance relative to bare metal.
To eliminate these switches, we propose ELI (ExitLess In-
terrupts), a software-only approach for handling physical
interrupts directly within the guest in a secure manner.

With ELI, physical interrupts are delivered directly to
guests, allowing them to process their devices’ interrupts
without host involvement; ELI makes sure that each guest
forwards all other interrupts to the host. With x86 hardware,
interrupts are delivered using a software-controlled table of
pointers to functions, such that the hardware invokes the
k-th function whenever an interrupt of type k fires. Instead
of utilizing the guest’s table, ELI maintains, manipulates,
and protects a “shadow table”, such that entries associated
with assigned devices point to the guest’s code, whereas
the other entries are set to trigger an exit to the host. We
describe x86 interrupt handling relevant to ELI and ELI itself
in Section 3 and Section 4, respectively. ELI leads to a
mostly exitless execution as depicted in Figure 1(c).

We experimentally evaluate ELI in Section 5 with micro
and macro benchmarks. Our baseline configuration employs
standard techniques to reduce (coalesce) the number of inter-
rupts, demonstrating ELI’s benefit beyond the state-of-the-
art. We show that ELI improves the throughput and latency
of guests by 1.3x–1.6x. Notably, whereas I/O-intensive guests
were so far limited to 60%–65% of bare-metal throughput,
with ELI they reach performance that is within 97%–100%
of the optimum. Consequently, ELI makes it possible to, e.g.,
consolidate traditional data-center workloads that nowadays
remain non-virtualized due to unacceptable performance loss.

In Section 6 we describe how ELI protects the aforemen-
tioned table, maintaining security and isolation while still
allowing guests to handle interrupts directly. In Section 7
we discusses potential hardware support that would simplify
ELI’s design and implementation. Finally, in Section 8 we
discuss the applicability of ELI and our future work directions,
and in Section 9 we conclude.

2. MOTIVATION AND RELATED WORK
For the past several decades, interrupts have been the main

method by which hardware devices can send asynchronous
events to the operating system [13]. The main advantage of
using interrupts to receive notifications from devices over
polling them is that the processor is free to perform other
tasks while waiting for an interrupt. This advantage applies
when interrupts happen relatively infrequently [39], as has
been the case until high performance storage and network
adapters came into existence. With these devices, the CPU
can be overwhelmed with interrupts, leaving no time to exe-
cute code other than the interrupt handler [34]. When the
operating system is run in a guest, interrupts have a higher
cost since every interrupt causes multiple exits [2, 9, 26].

In the remainder of this section we introduce the existing
approaches to reduce the overheads induced by interrupts,

and we highlight the novelty of ELI in comparison to these
approaches. We subdivide the approaches into two categories.

2.1 Generic Interrupt Handling Approaches
We now survey approaches that equally apply to bare

metal and virtualized environments.
Polling disables interrupts entirely and polls the device for

new events at regular intervals. The benefit is that handling
device events becomes synchronous, allowing the operating
system to decide when to poll and thus limit the number of
handler invocations. The drawbacks are added latency and
wasted cycles when no events are pending. If polling is done
on a different core, latency is improved, yet a core is wasted.
Polling also consumes power since the processor cannot enter
an idle state.

A hybrid approach for reducing interrupt-handling over-
head is to dynamically switch between using interrupts and
polling [17, 22, 34]. Linux uses this approach by default
through the NAPI mechanism [45]. Switching between in-
terrupts and polling does not always work well in practice,
partly due to the complexity of predicting the number of
interrupts a device will issue in the future.

Another approach is interrupt coalescing [4, 43,54], in
which the OS programs the device to send one interrupt in a
time interval or one interrupt per several events, as opposed
to one interrupt per event. As with the hybrid approaches,
coalescing delays interrupts and hence might suffer from the
same shortcomings in terms of latency. In addition, coalescing
has other adverse effects and cannot be used as the only inter-
rupt mitigation technique. Zec et al. [54] show that coalescing
can burst TCP traffic that was not bursty beforehand. It also
increases latency [28,40], since the operating system can only
handle the first packet of a series when the last coalesced
interrupt for the series arrived. Deciding on the right model
and parameters for coalescing is complex and depends on
the workload, particularly when the workload runs within a
guest [15]. Getting it right for a wide variety of workloads
is hard if not impossible [4, 44]. Unlike coalescing, ELI does
not reduce the number of interrupts; instead it streamlines
the handling of interrupts targeted at virtual machines. Co-
alescing and ELI are therefore complementary: coalescing
reduces the number of interrupts, and ELI reduces their price.
Furthermore, with ELI, if a guest decides to employ coalesc-
ing, it can directly control the interrupt rate and latency,
leading to predictable results. Without ELI, the interrupt
rate and latency cannot be easily manipulated by changing
the coalescing parameters, since the host’s involvement in
the interrupt path adds variability and uncertainty.

All evaluations in Section 5 were performed with the default
Linux configuration, which combines the hybrid approach
(via NAPI) and coalescing.

2.2 Virtualization-Specific Approaches
Using an emulated or paravirtual [7, 41] device provides

much flexibility on the host side, but its performance is
much lower than that of device assignment, not to mention
bare metal. Liu [31] shows that device assignment of SR-
IOV devices [16] can achieve throughput close to bare metal
at the cost of as much as 2x higher CPU utilization. He
also demonstrates that interrupts have a great impact on
performance and are a major expense for both the transmit
and receive paths. For this reason, although applicable to
the emulated and paravirtual case as well, ELI’s main focus
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is on improving device assignment.
Interrupt overhead is amplified in virtualized environments.

The Turtles project [9] shows interrupt handling to cause
a 25% increase in CPU utilization for a single-level virtual
machine when compared with bare metal, and a 300% increase
in CPU utilization for a nested virtual machine. There are
software techniques [3] to reduce the number of exits by
finding blocks of exiting instructions and exiting only once for
the whole block. These techniques can increase the efficiency
of running a virtual machine when the main reason for the
overhead is in the guest code. When the reason is in external
interrupts, such as for I/O intensive workloads with SR-IOV,
such software techniques do not alleviate the overhead.

Dong et al. [15] discuss a framework for implementing
SR-IOV support in the Xen hypervisor. Their results show
that SR-IOV can achieve line rate with a 10Gbps network
interface controller (NIC). However, the CPU utilization is
148% of bare metal. In addition, this result is achieved using
adaptive interrupt coalescing, which increases I/O latency.

Like ELI, several studies attempted to reduce the aforemen-
tioned extra overhead of interrupts in virtual environments.
vIC [4] discusses a method for interrupt coalescing in virtual
storage devices and shows an improvement of up to 5% in a
macro benchmark. Their method decides how much to coa-
lesce based on the number of “commands in flight”. Therefore,
as the authors say, this approach cannot be used for network
devices due to the lack of information on commands (or
packets) in flight. Furthermore, no comparison is made with
bare-metal performance. Dong et al. [14] use virtual interrupt
coalescing via polling in the guest and receive side scaling
to reduce network overhead in a paravirtual environment.
But polling has its drawbacks, as discussed above, and ELI
improves the more performance-oriented device assignment
environment.

In CDNA [51], the authors propose a method for concur-
rent and direct network access for virtual machines. This
method requires physical changes to NICs akin to SR-IOV.
With CDNA, the NIC and the hypervisor split the work of
multiplexing several guests’ network flows onto a single NIC.
In the CDNA model the hypervisor is still involved in the
I/O path. While CDNA significantly increases throughput
compared to the standard paravirtual driver in Xen, it is still
2x–3x slower than bare metal.

SplitX [26] proposes hardware extensions for running vir-
tual machines on dedicated cores, with the hypervisor running
in parallel on a different set of cores. Interrupts arrive only
at the hypervisor cores and are then sent to the appropriate
guests via an exitless inter-core communication mechanism.
In contrast, with ELI the hypervisor can share cores with its
guests, and instead of injecting interrupts to guests, programs
the interrupts to arrive at them directly. Moreover, ELI does
not require any hardware modifications and runs on current
hardware.

NoHype [24,48] argues that modern hypervisors are prone
to attacks by their guests. In the NoHype model, the hyper-
visor is a thin layer that starts, stops, and performs other
administrative actions on guests, but is not otherwise in-
volved. Guests use assigned devices and interrupts are deliv-
ered directly to guests. No details of the implementation or
performance results are provided. Instead, the authors focus
on describing the security and other benefits of the model.
In addition, NoHype requires a modified and trusted guest.

In Following the White Rabbit [52], the authors show sev-

eral interrupt-based attacks on hypervisors, which can be
addressed through the use of interrupt remapping [1]. Inter-
rupt remapping can stop the guest from sending arbitrary
interrupts to the host; it does not, as its name might im-
ply, provide a mechanism for secure and direct delivery of
interrupts to the guest. Since ELI delivers interrupts directly
to guests, bypassing the host, the hypervisor is immune to
certain interrupt-related attacks.

3. X86 INTERRUPT HANDLING
ELI gives untrusted and unmodified guests direct access

to the architectural interrupt handling mechanisms in such
a way that the host and other guests remain protected. To
put ELI’s design in context, we begin with a short overview
of how interrupt handling works on x86 today.

3.1 Interrupts in Bare-Metal Environments
x86 processors use interrupts and exceptions to notify

system software about incoming events. Interrupts are asyn-
chronous events generated by external entities such as I/O
devices; exceptions are synchronous events—such as page
faults—caused by the code being executed. In both cases,
the currently executing code is interrupted and execution
jumps to a pre-specified interrupt or exception handler.

x86 operating systems specify handlers for each interrupt
and exception using an architected in-memory table, the
Interrupt Descriptor Table (IDT). This table contains up to
256 entries, each entry containing a pointer to a handler. Each
architecturally-defined exception or interrupt have a numeric
identifier—an exception number or interrupt vector—which is
used as an index to the table. The operating systems can use
one IDT for all of the cores or a separate IDT per core. The
operating system notifies the processor where each core’s IDT
is located in memory by writing the IDT’s virtual memory
address into the Interrupt Descriptor Table Register (IDTR).
Since the IDTR holds the virtual (not physical) address of
the IDT, the OS must always keep the corresponding address
mapped in the active set of page tables. In addition to the
table’s location in memory, the IDTR also holds the table’s
size.

When an external I/O device raises an interrupt, the pro-
cessor reads the current value of the IDTR to find the IDT.
Then, using the interrupt vector as an index to the IDT,
the CPU obtains the virtual address of the corresponding
handler and invokes it. Further interrupts may or may not
be blocked while an interrupt handler runs.

System software needs to perform operations such as en-
abling and disabling interrupts, signaling the completion of
interrupt handlers, configuring the timer interrupt, and send-
ing inter-processor interrupts (IPIs). Software performs these
operations through the Local Advanced Programmable Inter-
rupt Controller (LAPIC) interface. The LAPIC has multiple
registers used to configure, deliver, and signal completion of
interrupts. Signaling the completion of interrupts, which is
of particular importance to ELI, is done by writing to the
end-of-interrupt (EOI) LAPIC register. The newest LAPIC
interface, x2APIC [20], exposes its registers using model spe-
cific registers (MSRs), which are accessed through“read MSR”
and “write MSR” instructions. Previous LAPIC interfaces ex-
posed the registers only in a pre-defined memory area which
is accessed through regular load and store instructions.
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3.2 Interrupts in Virtual Environments
x86 hardware virtualization [5, 50] provides two modes of

operation, guest mode and host mode . The host, running
in host mode, uses guest mode to create new contexts for
running guest virtual machines. Once the processor starts
running a guest, execution continues in guest mode until
some sensitive event [36] forces an exit back to host mode.
The host handles any necessary events and then resumes the
execution of the guest, causing an entry into guest mode.
These exits and entries are the primary cause of virtualization
overhead [2,9,26,37]. The overhead is particularly pronounced
in I/O intensive workloads [26,31, 38,46]. It comes from the
cycles spent by the processor switching between contexts, the
time spent in host mode to handle the exit, and the resulting
cache pollution [2, 9, 19,26].

This work focuses on running unmodified and untrusted
operating systems. On the one hand, unmodified guests are
not aware they run in a virtual machine, and they expect
to control the IDT exactly as they do on bare metal. On
the other hand, the host cannot easily give untrusted and
unmodified guests control of each core’s IDT. This is because
having full control over the physical IDT implies total control
of the core. Therefore, x86 hardware virtualization extensions
use a different IDT for each mode. Guest mode execution
on each core is controlled by the guest IDT and host mode
execution is controlled by the host IDT. An I/O device can
raise a physical interrupt when the CPU is executing either in
host mode or in guest mode. If the interrupt arrives while the
CPU is in guest mode, the CPU forces an exit and delivers
the interrupt to the host through the host IDT.

Guests receive virtual interrupts, which are not necessarily
related to physical interrupts. The host may decide to inject
the guest with a virtual interrupt because the host received
a corresponding physical interrupt, or the host may decide
to inject the guest with a virtual interrupt manufactured
by the host. The host injects virtual interrupts through the
guest IDT. When the processor enters guest mode after an
injection, the guest receives and handles the virtual interrupt.

During interrupt handling, the guest will access its LAPIC.
Just like the IDT, full access to a core’s physical LAPIC
implies total control of the core, so the host cannot easily
give untrusted guests access to the physical LAPIC. For
guests using the first LAPIC generation, the processor forces
an exit when the guest accesses the LAPIC memory area. For
guests using x2APIC, the host traps LAPIC accesses through
an MSR bitmap. When running a guest, the host provides
the CPU with a bitmap specifying which benign MSRs the
guest is allowed to access directly and which sensitive MSRs
must not be accessed by the guest directly. When the guest
accesses sensitive MSRs, execution exits back to the host. In
general, x2APIC registers are considered sensitive MSRs.

3.3 Interrupts from Assigned Devices
The key to virtualization performance is for the CPU to

spend most of its time in guest mode, running the guest, and
not in the host, handling guest exits. I/O device emulation
and paravirtualized drivers [7, 25,41] incur significant over-
head for I/O intensive workloads running in guests [9,31]. The
overhead is incurred by the host’s involvement in its guests’
I/O paths for programmed I/O (PIO), memory-mapped I/O
(MMIO), direct memory access (DMA), and interrupts.

Direct device assignment is the best performing approach
for I/O virtualization [15,31] because it removes some of the

host’s involvement in the I/O path. With device assignment,
guests are granted direct access to assigned devices. Guest
I/O operations bypass the host and are communicated di-
rectly to devices. As noted, device DMA’s also bypass the
host; devices perform DMA accesses to and from guests;
memory directly. Interrupts generated by assigned devices,
however, still require host intervention.

In theory, when the host assigns a device to a guest, it
should also assign the physical interrupts generated by the
device to that guest. Unfortunately, current x86 virtualization
only supports two modes: either all physical interrupts on
a core are delivered to the currently running guest, or no
physical interrupts are delivered to the currently running
guest (i.e., all physical interrupts in guest mode cause an
exit). An untrusted guest may handle its own interrupts,
but it must not be allowed to handle the interrupts of the
host and the other guests. Consequently, before ELI, the host
had no choice but to configure the processor to force an exit
when any physical interrupt arrives in guest mode. The host
then inspected the incoming interrupt and decided whether
to handle it by itself or inject it to the associated guest.

Figure 1(a) describes the interrupt handling flow with
baseline device assignment. Each physical interrupt from the
guest’s assigned device forces at least two exits from guest
to host: when the interrupt arrives (causing the host to gain
control and to inject the interrupt to the guest) and when the
guest signals completion of the interrupt handling (causing
the host to gain control and to emulate the completion for
the guest). Additional exits might also occur while the guest
handles an interrupt. As we exemplify in Section 5, interrupt-
related exits to host mode are the foremost contributors to
virtualization overhead for I/O intensive workloads.

4. ELI: DESIGN AND IMPLEMENTATION
ELI enables unmodified and untrusted guests to handle

interrupts directly and securely. ELI does not require any
guest modifications, and thus should work with any operating
system. It does not rely on any device-specific features, and
thus should work with any assigned device. On the interrupt
delivery path, ELI makes it possible for guests to receive
physical interrupts from their assigned devices directly while
still forcing an exit to the host for all other physical interrupts
(Section 4.1). On the interrupt completion path, ELI makes
it possible for guests to signal interrupt completion without
causing any exits (Section 4.4). How to do both securely,
without letting untrusted guests compromise the security
and isolation of the host and guests, is covered in Section 6.

4.1 Exitless Interrupt Delivery
ELI’s design was guided by the observation that nearly all

physical interrupts arriving at a given core are targeted at
the guest running on that core. This is due to several reasons.
First, in high-performance deployments, guests usually have
their own physical CPU cores (or else they would waste
too much time context switching); second, high-performance
deployments use device assignment with SR-IOV devices; and
third, interrupt rates are usually proportional to execution
time. The longer each guest runs, the more interrupts it
receives from its assigned devices. Following this observation,
ELI makes use of available hardware support to deliver all
physical interrupts on a given core to the guest running on it,
since most of them should be handled by that guest anyway,
and forces the (unmodified) guest to reflect back to the host
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all those interrupts which should be handled by the host.
The guest OS continues to prepare and maintain its own

IDT. Instead of running the guest with this IDT, ELI runs
the guest in guest mode with a different IDT prepared by
the host. We call this second guest IDT the shadow IDT.
Just like shadow page tables can be used to virtualize the
guest MMU [2,7], IDT shadowing can be used to virtualize
interrupt delivery. This mechanism, depicted in Figure 2,
requires no guest cooperation.

By shadowing the guest’s IDT, the host has explicit control
over the interrupt handlers invoked by the CPU on interrupt
delivery. The host can configure the shadow IDT to deliver
assigned interrupts directly to the guest’s interrupt handler
or force an exit for non-assigned interrupts. The simplest
method to cause an exit is to force the CPU to generate an
exception, because exceptions can be selectively trapped by
the host and can be easily generated if the host intentionally
misconfigures the shadow IDT. For our implementation, we
decided to force exits primarily by generating not-present
(NP) exceptions. Each IDT entry has a present bit. Before
invoking an entry to deliver an interrupt, the processor checks
if that entry is present (has the present bit set). Interrupts
delivered to not-present entries raise a NP exception. ELI
configures the shadow IDT as follows: for exceptions and
physical interrupts belonging to devices assigned to the guest,
the shadow IDT entries are copied from the guest’s original
IDT and marked as present. Every other entry in the shadow
IDT should be handled by the host and is therefore marked
as not present to force a not-present exception when the
processor tries to invoke the handler. Additionally, the host
configures the processor to force an exit from guest mode to
host mode whenever a not-present exception occurs.

Any physical interrupt reflected to the host appears in the
host as a not-present exception and must be converted back
to the original interrupt vector. The host inspects the cause
for the not-present exception. If the exit was actually caused
by a physical interrupt, the host raises a software interrupt
with the same vector as the physical interrupt, which causes
the processor to invoke the appropriate IDT entry, converting
the not-present exception into a physical interrupt. If the exit
was not caused by a physical interrupt, then it is a true guest
not-present exception and should be handled by the guest.
In this case, the host injects the exception back into the

guest. True guest not-present exceptions are rare in normal
execution.

The host also sometimes needs to inject into the guest
virtual interrupts raised by devices that are emulated by
the host (e.g., the keyboard). These interrupt vectors will
have their entries in the shadow IDT marked not-present.
To deliver such virtual interrupts through the guest IDT
handler, ELI enters a special injection mode by configuring
the processor to cause an exit on any physical interrupt and
running the guest with the original guest IDT. ELI then
injects the virtual interrupt into the guest, which handles the
virtual interrupt as described in Section 3.2. After the guest
signals completion of the injected virtual interrupt, ELI leaves
injection mode by reconfiguring the processor to let the guest
handle physical interrupts directly and resuming the guest
with the shadow IDT. As we later show in Section 5, the
number of injected virtual interrupts is orders of magnitude
smaller than the number of physical interrupts generated by
the assigned device. Thus, the number of exits caused by
physical interrupts while the guest is running in injection
mode is negligible.

Instead of changing the IDT entries’ present bits to cause
reflection into the host, the host could also change the en-
tries themselves to invoke shadow interrupt handlers in guest
mode. This alternative method can enable additional func-
tionality, such as delaying or batching physical interrupts,
and is discussed in Section 8.

Even when all the interrupts require exits, ELI is not slower
than baseline device assignment. The number of exits never
increases and cost per exit remains the same. Changes in the
IDT are rare and the guest OS does not normally modify
the IDT content after system initialization. The processor
reconfiguration to enter and leave injection mode requires
only two memory writes, one to change the IDT pointer and
the other to change the CPU execution mode.

4.2 Placing the Shadow IDT
There are several requirements on where in guest memory

to place the shadow IDT. First, it should be hidden from
the guest, i.e., placed in memory not normally accessed by
the guest. Second, it must be placed in a guest physical
page which is always mapped in the guest’s kernel address
space. This is an x86 architectural requirement, since the
IDTR expects a virtual address. Third, since the guest is
unmodified and untrusted, the host cannot rely on any guest
cooperation for placing the shadow IDT. ELI satisfies all
three requirements by placing the shadow IDT in an extra
page of a device’s PCI BAR (Base Address Register).

PCI devices which expose their registers to system software
as memory do so through BAR registers. BARs specify the
location and sizes of device registers in physical memory.
Linux and Windows drivers will map the full size of their
devices’ PCI BARs into the kernel’s address space, but they
will only access specific locations in the mapped BAR that
are known to correspond to device registers. Placing the
shadow IDT in an additional memory page tacked onto the
end of a device’s BAR causes the guest to (1) map it into
its address space, (2) keep it mapped, and (3) not access it
during normal operation. All of this happens as part of normal
guest operation and does not require any guest awareness or
cooperation. To detect runtime changes to the guest IDT, the
host also write-protects the shadow IDT page. Other security
and isolation considerations are discussed in Section 6.
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4.3 Configuring Guest and Host Vectors
Neither the host nor the guest have absolute control over

precisely when an assigned device interrupt fires. Since the
host and the guest may run at different times on the core
receiving the interrupt, both must be ready to handle the
same interrupt. (The host handles the interrupt by injecting it
into the guest.) Interrupt vectors also control that interrupt’s
relative priority compared with other interrupts. For both of
these reasons, ELI makes sure that for each device interrupt,
the respective guest and host interrupt handlers are assigned
to the same vector.

Since the guest is not aware of the host and chooses arbi-
trary interrupt vectors for the device’s interrupts, ELI makes
sure the guest, the host, and the device all use the same vec-
tors. ELI does this by trapping the guest’s programming of
the device to indicate which vectors it wishes to use and then
allocating the same vectors in the host. In the case where
these vectors were already used in the host for another device,
ELI reassigns that device’s interrupts to other (free) vectors.
Finally, ELI programs the device with the vectors the guest
indicated. Hardware-based interrupt remapping [1] can avoid
the need to re-program the device vectors by remapping them
in hardware instead, but still requires the guest and the host
to use the same vectors.

4.4 Exitless Interrupt Completion
As shown in Figure 1(b), ELI IDT shadowing delivers

hardware interrupts to the guest without host intervention.
Signaling interrupt completion, however, still forces (at least)
one exit to host mode. This exit is caused by the guest
signaling the completion of an interrupt. As explained in
Section 3.2, guests signal completion by writing to the EOI
LAPIC register. This register is exposed to the guest either
as part of the LAPIC area (older LAPIC interface) or as
an x2APIC MSR (the new LAPIC interface). With the old
interface, nearly every LAPIC access causes an exit, whereas
with the new interface, the host can decide on a per-x2APIC-
register basis which register accesses cause exits and which
do not.

Before ELI, the host configured the CPU’s MSR bitmap
to force an exit when the guest accessed the EOI MSR. ELI
exposes the x2APIC EOI register directly to the guest by
configuring the MSR bitmap to not cause an exit when the
guest writes to the EOI register. No other x2APIC registers
are passed directly to the guest; the security and isolation
considerations arising from direct guest access to the EOI
MSR are discussed in Section 6. Figure 1(c) illustrates that
combining this interrupt completion technique with ELI IDT
shadowing allows the guest to handle physical interrupts
without any exits on the critical interrupt handling path.

Guests are not aware of the distinction between physical
and virtual interrupts. They signal the completion of all inter-
rupts the same way, by writing the EOI register. When the
host injects a virtual interrupt, the corresponding completion
should go to the host for emulation and not to the physi-
cal EOI register. Thus, during injection mode (described in
Section 4.1), the host temporarily traps accesses to the EOI
register. Once the guest signals the completion of all pending
virtual interrupts, the host leaves injection mode.

Trapping EOI accesses in injection mode also enables ELI
to correctly emulate x86 nested interrupts. A nested interrupt
occurs when a second interrupt arrives while the operating
system is still handling a previous interrupt. This can only

happen if the operating system enabled interrupts before
it finished handling the first interrupt. Interrupt priority
dictates that the second (nested) interrupt will only be de-
livered if its priority is higher than that of the first interrupt.
Some guest operating systems, including Windows, make
use of nested interrupts. ELI deals with nested interrupts
by checking the interrupt in service LAPIC register. This
register holds the highest interrupt vector not yet completed
(EOI pending) and lets ELI know whether the guest is in the
middle of handling a physical interrupt. If it is, ELI delays
the injection of any virtual interrupt with a priority that is
lower than the priority of that physical interrupt.

4.5 Multiprocessor Environments
Guests may have more virtual CPUs (vCPUs) than avail-

able physical cores. However, multiplexing more than one
guest vCPU on a single core will lead to an immediate drop
in performance, due to the increased number of exits and en-
tries [30]. Since our main goal is virtual machine performance
that equals bare-metal performance, we assume that each
guest vCPU has a mostly-dedicated physical core. Executing
a guest with multiple vCPUs, each running on its own mostly-
dedicated core, requires that ELI support interrupt affinity
correctly. ELI allows the guest to configure the delivery of
interrupts to a subset of its vCPUs, just as it does on bare
metal. ELI does this by intercepting the guest’s interrupt
affinity configuration changes and configuring the physical
hardware to redirect device interrupts accordingly.

5. EVALUATION
We implement ELI, as described in the previous sections,

within the KVM hypervisor [25]. This section evaluates the
functionality and performance of our implementation.

5.1 Methodology and Experimental Setup
We measure and analyze ELI’s effect on high-throughput

network cards assigned to a guest virtual machine. Network
cards are the most common use-case of device assignment,
due to: (1) their higher throughput relative to other devices
(which makes device assignment particularly appealing over
the slower alternatives of emulation and paravirtualization);
and because (2) SR-IOV network cards make it easy to assign
one physical network card to multiple guests.

We use throughput and latency to measure performance,
and we contrast the results achieved by virtualized and bare-
metal settings to demonstrate that the former can approach
the latter. As noted earlier, performance-minded applications
would typically dedicate whole cores to guests (single virtual
CPU per core). We limit our evaluation to this case.

Our test machine is an IBM System x3550 M2, which is
a dual-socket, 4-cores-per-socket server equipped with Intel
Xeon X5570 CPUs running at 2.93 GHz. The chipset is In-
tel 5520, which includes an IOMMU as required for device
assignment. The system includes 24GB of memory and an
Emulex OneConnect 10Gbps NIC. We use another similar
remote server (connected directly by 10Gbps fiber) as work-
load generator and a target for I/O transactions. We set the
Maximum Transmission Unit (MTU) to its default size of
1500 bytes; we do not use jumbo Ethernet frames.

Guest mode configurations execute with a single vCPU.
Bare-metal configurations execute with a single core enabled,
so as to have comparable setups. We assign 1GB of memory
for both types of configurations. We disable the IOMMU in
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Figure 3: Performance of three I/O intensive workloads (described in the main text). We compare the
throughput measured when using baseline device assignment, delivery-only ELI and full ELI, scaled so 100%
means bare-metal throughput. Throughput gains over baseline device assignment are noted inside the bars.

bare-metal configurations, such that the associated results
represent the highest attainable performance. We use the
IOMMU for device assignment in virtualized configuration,
but do not expose it to guests [6]. We disable Dynamic
Voltage and Frequency Scaling (DVFS) to avoid power fea-
tures related artifacts. Both guest and bare-metal setups run
Ubuntu 9.10 with Linux 2.6.35.

We run all guests on the KVM hypervisor (which is part
of Linux 2.6.35) and QEMU-KVM 0.14.0. We run them with
and without ELI modifications. To check that ELI functions
correctly in other setups, we also deploy it in an environ-
ment that uses a different device (a Broadcom NetXtreme II
BCM5709 1Gbps NIC) and a different OS (Windows 7); we
find that ELI indeed operates correctly.

Unless otherwise stated, we configure the hypervisor to
back the guest’s memory with 2MB huge pages [35] and two-
dimensional page tables. Huge pages minimize two-dimensional
paging overhead [11] and reduce TLB pressure. We note that
only the host uses huge pages; in all cases the guest still op-
erates with the default 4KB page size. We later quantify the
performance without huge pages, finding that they improve
performance of both baseline and ELI runs.

Recall that ELI makes use of the x2APIC hardware to avoid
exits on interrupt completions (see Section 4.4). x2APIC is a
relatively new feature available in every Intel x86 CPU since
the release of the Sandy Bridge microarchitecture. Alas, the
hardware we used for evaluation did not support x2APIC. To
nevertheless measure the benefits of ELI utilizing x2APIC
hardware, we slightly modify our Linux guest to emulate
the x2APIC behavior. Specifically, we expose the physical
LAPIC and a control flag to the guest, such that the guest
may perform an EOI on the virtual LAPIC (forcing an exit)
or the physical LAPIC (no exit), depending on the value of
the control flag. We verified that our approach conforms to
the published specifications.

5.2 Throughput
I/O virtualization performance suffers the most with work-

loads that are I/O intensive, and which incur many interrupts.
We start our evaluation by measuring three well-known exam-
ples of network-intensive workloads, and show that for these

benchmarks ELI provides a significant (49%–66%) through-
put increase over baseline device assignment, and that it
nearly (to 0%-3%) reaches bare-metal performance. We con-
sider the following three benchmarks:

1. Netperf TCP stream, is the simplest of the three
benchmarks [23]. It opens a single TCP connection to
the remote machine, and makes as many rapid write()

calls of a given size as possible.

2. Apache is an HTTP server. We use ApacheBench to
load the server and measure its performance. Apache-
Bench runs on the remote machine and repeatedly
requests a static page of a given size from several con-
current threads.

3. Memcached is a high-performance in-memory key-
value storage server [18]. It is used by many high-profile
Web sites for caching results of slow database queries,
thereby significantly improving the site’s overall per-
formance and scalability. We used the Memslap bench-
mark, part of the libmemcached client library, to load
the server and measure its performance. Memslap runs
on the remote machine, sends a random sequence of
memcached get (90%) and set (10%) requests to the
server and measures the request completion rate.

We configure each benchmark with parameters which fully
load the tested machine’s CPU (so that throughput can
be compared), but do not saturate the tester machine. We
configure Netperf to do 256-byte writes, ApacheBench to
request 4KB static pages from 4 concurrent threads, and
Memslap to make 64 concurrent requests from 4 threads
(with other parameters set to their default values). We verify
that the results do not significantly vary when we change
these parameters.

Figure 3 illustrates how ELI improves the throughput of
these three benchmarks. Each of the benchmarks was run on
bare metal (no virtualization) and under three virtualized se-
tups: baseline device assignment, device assignment with ELI
delivery only, and device assignment with full ELI (avoiding
exits on both delivery and completion of interrupts). The
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Figure 4: ELI’s improvement for each of the workloads, with normal (4K) and huge (2M) host pages. Gains
over baseline device assignment with normal pages or huge pages are noted inside the respective bars.

results are based on averaging ten identical runs, with the
standard deviation being up to 0.9% of the average for the
Netperf runs, up to 0.5% for Apache, and up to 2.6% for
Memcached.

The figure shows that baseline device assignment perfor-
mance is still considerably below bare-metal performance:
Netperf throughput on a guest is at 60% of bare-metal
throughput, Apache is at 65%, and Memcached at 60%. With
ELI, Netperf achieves 98% of the bare-metal throughput,
Apache 97%, and Memcached 100%. As mentioned above,
it is meaningful to compare the throughputs, and not CPU
usage, because the CPU is fully utilized in all these setups.

It is evident from the figure that using ELI gives a signifi-
cant throughput increase, 63%, 49%, and 66% for Netperf,
Apache, and Memcached, respectively. The measurements
also show that ELI delivery-only gives most of the perfor-
mance benefit of the full ELI. For Apache, ELI delivery-only
gives a 33% throughput increase, and avoiding the remaining
completion exits improves throughput by an additional 12%.

As noted, these results are obtained with the huge pages
feature enabled, which means KVM utilizes 2MB host pages
to back guests’ memory (though guests still continue to use
normal-sized 4KB pages). Backing guests with huge pages
gives an across-the-board performance improvement to both
baseline and ELI runs. To additionally demonstrate ELI’s
performance when huge pages are not available, Figure 4
contrasts results from all three benchmarks with and without
huge pages. We see that using ELI gives a significant through-
put increase, 128%, 42%, and 59% for Netperf, Apache, and
Memcached, respectively, even without huge pages. We fur-
ther see that bare-metal performance for guests requires the
host to use huge pages. This requirement arises due to ar-
chitectural limitations; without it, pressure on the memory
subsystem significantly hampers performance due to two-
dimensional hardware page walks [11]. As can be seen in
Figures 3 and 4, the time saved by eliminating the exits due
to interrupt delivery and completion varies. The host han-
dling of interrupts is a complex operation, and it is avoided
by ELI delivery. What ELI completion then avoids is the
host handling of EOI, but that handling is quick when ELI
is already enabled—it basically amounts to issuing an EOI
on the physical LAPIC (see Section 4.4).

5.3 Execution Breakdown
Breaking down the execution time to host, guest, and

overhead components allows us to better understand how

Netperf Base- ELI Bare
statistic line delivery ELI metal
Exits/s 102222 43832 764
Time in guest 69% 94% 99%
Interrupts/s 48802 42600 48746 48430
handled in host 48802 678 103

Injections/s 49058 941 367
IRQ windows/s 8060 686 103
Throughput mbps 3145 4886 5119 5245

Apache Base- ELI Bare
statistic line delivery ELI metal
Exits/s 90506 64187 1118
Time in guest 67% 89% 98%
Interrupts/s 36418 61499 66546 68851
handled in host 36418 1107 195

Injections/s 36671 1369 458
IRQ windows/s 7801 1104 192
Requests/s 7729 10249 11480 11875
Avg response ms 0.518 0.390 0.348 0.337

Memcached Base- ELI Bare
statistic line delivery ELI metal
Exits/s 123134 123402 1001
Time in guest 60% 83% 98%
Interrupts/s 59394 120526 154512 155882
handled in host 59394 2319 207

Injections/s 59649 2581 472
IRQ windows/s 9069 2345 208
Transactions/s 112299 153617 186364 186824

Table 1: Execution breakdown for the three bench-
marks, with baseline device assignment, delivery-
only ELI, and full ELI.

and why ELI improves the guest’s performance. Table 1
shows this breakdown for the above three benchmarks.

Intuitively, guest performance is better with ELI because
the guest gets a larger fraction of the CPU (the host uses
less), and/or because the guest runs more efficiently when it
gets to run. With baseline device assignment, only 60%–69%
of the CPU time is spent in the guest. The rest is spent in
the host, handling exits or performing the world-switches
necessary on every exit and entry.
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Figure 5: Modified-Netperf workloads with various computation-I/O ratios.

With only ELI delivery enabled, the heavy “interrupts
handled in host” exits are avoided and the time in the guest
jumps to 83%–94%. Although EOI exit handling is fairly
fast, there are still many exits (43832–123402 in the different
benchmarks), and the world-switch times still add up to a
significant overhead. Only when ELI completion eliminates
most those exits and most world-switches, do both time
in host (1%–2%) and number of world-switches (764–1118)
finally become low.

In baseline device assignment, all interrupts arrive at the
host (perhaps after exiting a running guest) and are then
injected to the guest. The injection rate is slightly higher
than interrupt rate because the host injects additional virtual
interrupts, such as timer interrupts.

With ELI delivery, only the 678–2319 interrupts that occur
while the host is running, or during exits, or while handling
an injected interrupt, will arrive at the host—the rest will
be handled directly by the guest. The number of interrupts
“handled in host” is even lower (103–207) when ELI comple-
tion is also used, because the fraction of the time that the
CPU is running the host or exiting to the host is much lower.

Baseline device assignment is further slowed down by “IRQ
window” exits: on bare metal, when a device interrupt occurs
while interrupts are blocked, the interrupt will be delivered
by the LAPIC hardware some time later. But when a guest
is running, an interrupt always causes an immediate exit.
The host wishes to inject this interrupt to the guest (if it is
an interrupt from the assigned device), but if the guest has
interrupts blocked, it cannot. The x86 architecture solution is
to run the guest with an“IRQ window”enabled, requesting an
exit as soon as the guest enables interrupts. In the table, we
can see 7801–9069 of these exits every second in the baseline
device assignment run. ELI mostly eliminates IRQ window
overhead, by eliminating most injections.

As expected, ELI slashes the number of exits, from 90506–
123134 in the baseline device assignment runs, to just 764–
1118. One might guess that delivery-only ELI, which avoids
one type of exit (on delivery) but retains another (on comple-
tion), should result in an exit rate halfway between the two.
But in practice, other factors play into the ELI delivery-only
exit rate: the interrupt rate might have changed from the
baseline case (we see it significantly increased in the Apache
and Memcached benchmarks, but slightly lowered in Net-

perf), and even in the baseline case some interrupts might
have not caused exits because they happened while the host
was running (and it was running for a large fraction of the
time). The number of IRQ window exits is also different, for
the reasons discussed above.

5.4 Impact of Interrupt Rate
The benchmarks in the previous section demonstrated

that ELI significantly improves throughput over baseline
device assignment for I/O intensive workloads. But as the
workload spends less of its time on I/O and more of its
time on computation, it seems likely that ELI’s improvement
might be less pronounced. Nonetheless, counterintuitively, we
shall now show that ELI continues to provide relatively large
improvements until we reach some fairly high computation-
per-I/O ratio (and some fairly low throughput). To this end,
we modify the Netperf benchmark to perform a specified
amount of extra computation per byte written to the stream.
This resembles many useful server workloads, where the server
does some computation before sending its response.

A useful measure of the ratio of computation to I/O is
cycles/byte, the number of CPU cycles spent to produce one
byte of output; this ratio is easily measured as the quotient of
CPU frequency (in cycles/second) and workload throughput
(in bytes/second). Note, cycles/byte is inversely proportional
to throughput. Figure 5(a) depicts ELI’s improvement as a
function of this ratio, showing it remains over 25% until after
60 cycles/byte (which corresponds to throughput of only
50Mbps). The reason underlying this result becomes appar-
ent when examining Figure 5(b), which shows the interrupt
rates measured during the associated runs from Figure 5(a).
Contrary to what one might expect, the interrupt rate is
not proportional to the throughput (until 60 cycles/byte);
instead, it remains between 30K–60K. As will be shortly ex-
emplified, rates are kept in this range due to the NIC (which
coalesces interrupts) and the Linux driver (which employs
the NAPI mechanism), and they would have been higher
if it were not for these mechanisms. Since ELI lowers the
overhead of handling interrupts, its benefit is proportional
to their rate, not to throughput, a fact that explains why
the improvement is similar over a range of computation-I/O
values. The fluctuations in interrupt rate (and hence in ELI
improvement) shown in Figure 5 for cycles/byte < 20 are
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Figure 6: Throughput improvement and interrupt
rate for Netperf benchmark with different interrupt
coalescing intervals (shown in labels).

not caused by virtualization; they are also present in bare
metal settings and have to do with the specifics of the Linux
NIC driver implementation.

We now proceed to investigate the dependence of ELI’s
improvement on the amount of coalescing done by the NIC,
which immediately translates to the amount of generated
interrupts. Our NIC imposes a configurable cap on coalescing,
allowing its users to set a time duration T , such that the
NIC will not fire more than one interrupt per Tµs (longer T
implies less interrupts). We set the NIC’s coalescing cap to the
following values: 16µs, 24µs, 32µs, . . ., 96µs. Figure 6 plots the
results of the associated experiments (the data along the curve
denotes values of T ). Higher interrupt rates imply higher
savings due to ELI. The smallest interrupt rate that our
NIC generates for this workload is 13K interrupts/sec (with
T=96µs), and even with this maximal coalescing ELI still
provides a 10% performance improvement over the baseline.
ELI achieves at least 99% of bare-metal throughput in all of
the experiments described in this subsection.

5.5 Latency
By removing the exits caused by external interrupts, ELI

substantially reduces the time it takes to deliver interrupts to
the guest. This period of time is critical for latency-sensitive
workloads. We measure ELI’s latency improvement using
Netperf UDP request-response, which sends a UDP packet
and waits for a reply before sending the next. To simulate
a busy guest that always has some work to do alongside a
latency-sensitive application, we run a busy-loop within the
guest. Table 2 presents the results. We can see that baseline
device assignment increases bare metal latency by 8.21µs
and that ELI reduces this gap to only 0.58µs, which is within
98% of bare-metal latency.

6. SECURITY AND ISOLATION
ELI’s performance stems from the host giving guests direct

access to privileged architectural mechanisms. In this section,
we review potential threats and how ELI addresses them.

6.1 Threat Model
We analyze malicious guest attacks against the host through

a hardware-centric approach. ELI grants guests direct con-

Average % of
Configuration latency bare-metal
Baseline 36.14 µs 129%
ELI delivery-only 30.10 µs 108%
ELI 28.51 µs 102%
Bare-metal 27.93 µs 100%

Table 2: Latency measured by Netperf UDP request-
response benchmark.

trol over several hardware mechanisms that current hypervi-
sors keep protected: interrupt masking, reception of physical
interrupts, and interrupt completion via the EOI register.
Using these mechanisms, a guest can disable interrupts for
unbounded periods of time, try to consume (steal) host in-
terrupts, and issue interrupt completions incorrectly.

Delivering interrupts directly to the guest requires that
the guest be able to control whether physical interrupts are
enabled or disabled. Accordingly, ELI allows the guest to
control interrupt masking, both globally (all interrupts are
blocked) and by priority (all interrupts whose priority is below
a certain threshold are blocked). Ideally, interrupts that are
not assigned to the guest would be delivered to the host
even when the guest masks them, yet x86 does not currently
provide such support. As a result, the guest is able to mask
any interrupt, possibly forever. Unless addressed, masking
high-priority interrupts such as the thermal interrupt that
indicates the CPU is running hot, may cause the system
to crash. Likewise, disabling and never enabling interrupts
could allow the guest to run forever.

While ELI configures the guest shadow IDT to trigger
an exit for non-assigned physical interrupts, the interrupts
are still first delivered to the guest. Therefore, we must con-
sider the possibility that a guest, in spite of ELI, manages
to change the physical IDT. If this happens, both assigned
interrupts and non-assigned interrupts will be delivered to
the guest while it is running. If the guest manages to change
the physical IDT, a physical interrupt might not be deliv-
ered to the host, which might cause a host device driver to
malfunction.

ELI also grants the guest direct access to the EOI register.
Reading EOI is prevented by the CPU, and writes to the
register while no interrupt is handled do not affect the system.
Nevertheless, if the guest exits to the host without signaling
the completion of in-service interrupts, it can affect the host
interruptibility, as x86 automatically masks all interrupts
whose priority is lower than the one in service. Since the
interrupt is technically still in service, the host may not
receive lower-priority interrupts.

6.2 Protection
ELI’s design addresses all of these threats. To protect

against malicious guests stealing CPU time by disabling
interrupts forever, ELI uses the preemption timer feature of
x86 virtualization, which triggers an unconditional exit after
a configurable period of time elapses.

To protect host interruptibility, ELI signals interrupt com-
pletion for any assigned interrupt still in service after an exit.
To maintain correctness, when ELI detects that the guest
did not complete any previously delivered interrupts, it falls
back to injection mode until the guest signals completions of
all in-service interrupts. Since all of the registers that control
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CPU interruptibility are reloaded upon exit, the guest cannot
affect host interruptibility.

To protect against malicious guests blocking or consuming
critical physical interrupts, ELI uses one of the following
mechanisms. First, if there is a core which does not run any
ELI-enabled guests, ELI redirects critical interrupts there.
If no such core is available, ELI uses a combination of Non-
Maskable-Interrupts (NMIs) and IDT limiting.

Non-Maskable-Interrupts (NMIs) trigger unconditional ex-
its; they cannot be blocked by guests. ELI redirects critical
interrupts to the core’s single NMI handles. All critical inter-
rupts are registered with the NMI handler, and whenever an
NMI occurs, the NMI handler calls all registered interrupt vec-
tors to discern which critical interrupt occurred. NMI sharing
has a negligible run-time cost (since critical interrupts rarely
happen). However, some devices and device drivers may lock
up or otherwise misbehave if their interrupt handlers are
called when no interrupt was raised.

For critical interrupts whose handlers must only be called
when an interrupt actually occurred, ELI uses a complemen-
tary coarse grained IDT limit mechanism. The IDT limit is
specified in the IDTR register, which is protected by ELI
and cannot be changed by the guest. IDT limiting reduces
the limit of the shadow IDT, causing all interrupts whose
vector is above the limit to trigger the usually rare general
purpose exception (GP). GP is intercepted and handled by
the host similarly to the not-present (NP) exception. Unlike
reflection through NP (Section 4.1), which the guest could
perhaps subvert by changing the physical IDT, no events take
precedence over the IDTR limit check [21]. It is therefore
guaranteed that all handlers above the limit will trap to the
host when called.

For IDT limiting to be transparent to the guest, the limit
must be set above the highest vector of the assigned devices’
interrupts. Moreover, it should be higher than any software
interrupt that is in common use by the guest, since such
interrupts will undesirably trigger frequent exits and reduce
performance. Therefore, in practice ELI sets the threshold
just below the vectors used by high-priority interrupts in
common operating systems [12, 42]. Since this limits the
number of available above-the-limit handlers, ELI uses the
IDT limiting for critical interrupts and reflection through
not-present exceptions for other interrupts.

7. ARCHITECTURAL SUPPORT
The overhead of interrupt handling in virtual environments

is due to the design choices of x86 hardware virtualization.
The implementation of ELI could be simplified and improved
by adding a few features to the processor.

First, to remove the complexity of managing the shadow
IDT and the overhead caused by exits on interrupts, the
processor should provide a feature to assign physical inter-
rupts to a guest. Interrupts assigned to a guest should be
delivered through the guest IDT without causing an exit.
Any other interrupt should force an exit to the host context.
Interrupt masking during guest mode execution should not
affect non-assigned interrupts. To solve the vector sharing
problem described in Section 4.3, the processor should pro-
vide a mechanisms to translate from host interrupt vectors
to guest interrupt vectors. Second, to remove the overhead of
interrupt completion, the processor should allow a guest to
signal completion of assigned interrupts without causing an
exit. For interrupts assigned to a guest, EOI writes should

be directed to the physical LAPIC. Otherwise, EOI writes
should force an exit.

8. APPLICABILITY AND FUTURE WORK
While this work focuses on the advantages of letting guests

handle physical interrupts directly, ELI can also be used
to directly deliver all virtual interrupts, including those of
paravirtual devices, emulated devices, and inter-processor
interrupts (IPI). Currently, hypervisors deliver these inter-
rupts to guests through the architectural virtual interrupt
mechanism. This mechanism requires multiple guest exits,
which would be eliminated by ELI. The only requirement
for using ELI is that the interrupt vector not be used by the
host. Since interrupt vectors tend to be fixed, the host can in
most cases relocate the interrupts handlers it uses to other
vectors that are not used by guests.

ELI can also be used for injecting guests with virtual in-
terrupts without exits, in scenarios where virtual interrupts
are frequent. The host can send an IPI from any core with
the proper virtual interrupt vector to the target guest core,
eliminating the need for exits due to interrupt-window, in-
terrupt delivery, and completion. The host can also inject
interrupts into the guest from the same core by sending a
self-IPI right before resuming the guest, so the interrupt will
be delivered in the guest context, saving at least the exit
currently required for interrupt completion.

ELI can also be used for direct delivery to guests of LAPIC-
triggered non-critical interrupts such as the timer interrupt.
Once the timer interrupt is assigned to the guest, the host
can use the architectural preemption timer (described in
Section 6) for preempting the guest instead of relying on the
timer interrupt.

The current ELI implementation configures the shadow
IDT to force an exit when the guest is not supposed to
handle an incoming physical interrupt. In the future, we
plan to extend our implementation and configure the shadow
IDT to invoke shadow interrupt handlers—handler routines
hidden from the guest operating system and controlled by the
host [10]. Using this approach, the shadow handlers running
host code will be executed in guest mode without causing
a transition to host mode. The code could then inspect
the interrupt and decide to batch it, delay it, or force an
immediate exit. This mechanism can help to mitigate the
overhead of physical interrupts not assigned to the guest. In
addition, shadow handlers can also be used for function call
injection, allowing the host to run code in guest mode.

9. CONCLUSIONS
The key to high virtualization performance is for the CPU

to spend most of its time in guest mode, running the guest,
and not in the host, handling guest exits. Yet current ap-
proaches to x86 virtualization induce multiple exits by re-
quiring host involvement in the critical interrupt handling
path. The result is that I/O performance suffers. We pro-
pose to eliminate the unwarranted exits by introducing ELI,
an approach that lets guests handle interrupts directly and
securely. Building on many previous efforts to reduce virtual-
ization overhead, ELI finally makes it possible for untrusted
and unmodified virtual machines to reach nearly bare-metal
performance, even for the most I/O-intensive and interrupt-
heavy workloads.

ELI also demonstrates that the rich x86 architecture, which
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in many cases complicates hypervisor implementations, pro-
vides exciting opportunities for optimization. Exploiting these
opportunities, however, may require using architectural mech-
anisms in ways that their designers did not necessarily foresee.

Acknowledgments
The research leading to the results presented in this paper
is partially supported by the European Community’s Sev-
enth Framework Programme ([FP7/2001-2013]) under grant
agreements #248615 (IOLanes) and #248647 (ENCORE).

10. REFERENCES
[1] Abramson, D., Jackson, J., Muthrasanallur, S., Neiger,

G., Regnier, G., Sankaran, R., Schoinas, I., Uhlig, R.,
Vembu, B., and Wiegert, J. Intel virtualization technology
for directed I/O. Intel Technology Journal 10, 3 (2006),
179–192.

[2] Adams, K., and Agesen, O. A comparison of software and
hardware techniques for x86 virtualization. In ACM
Architectural Support for Programming Languages &
Operating Systems (ASPLOS) (2006).

[3] Agesen, O., Mattson, J., Rugina, R., and Sheldon, J.
Software techniques for avoiding hardware virtualization
exits. Tech. rep., VMware, 2011.

[4] Ahmad, I., Gulati, A., and Mashtizadeh, A. vIC:
Interrupt coalescing for virtual machine storage device IO.
In USENIX Annual Technical Conference (ATC) (2011).

[5] AMD Inc. AMD64 Architecture Programmer’s Manual
Volume 2: System Programming, 2011.

[6] Amit, N., Ben-Yehuda, M., Tsafrir, D., and Schuster,
A. vIOMMU: efficient IOMMU emulation. In USENIX
Annual Technical Conference (ATC) (2011).

[7] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
Xen and the art of virtualization. In ACM Symposium on
Operating Systems Principles (SOSP) (2003).

[8] Ben-Yehuda, M., Borovik, E., Factor, M., Rom, E.,
Traeger, A., and Yassour, B.-A. Adding advanced
storage controller functionality via low-overhead
virtualization. In USENIX Conference on File & Storage
Technologies (FAST) (2012).

[9] Ben-Yehuda, M., Day, M. D., Dubitzky, Z., Factor, M.,
Har’El, N., Gordon, A., Liguori, A., Wasserman, O.,
and Yassour, B.-A. The Turtles project: Design and
implementation of nested virtualization. In USENIX
Symposium on Operating Systems Design & Implementation
(OSDI) (2010).

[10] Betak, T., Duley, A., and Angepat, H. Reflective
virtualization improving the performance of fully-virtualized
x86 operating systems. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.129.7868.

[11] Bhargava, R., Serebrin, B., Spadini, F., and Manne, S.
Accelerating two-dimensional page walks for virtualized
systems. In ACM Architectural Support for Programming
Languages & Operating Systems (ASPLOS) (2008).

[12] Bovet, D., and Cesati, M. Understanding the Linux
Kernel, Second Edition. O’Reilly & Associates, Inc., 2002.

[13] Codd, E. F. Advances in Computers, vol. 3. New York:
Academic Press, 1962, pp. 77–153.

[14] Dong, Y., Xu, D., Zhang, Y., and Liao, G. Optimizing
network I/O virtualization with efficient interrupt coalescing
and virtual receive side scaling. In IEEE International
Conference on Cluster Computing (CLUSTER) (2011).

[15] Dong, Y., Yang, X., Li, X., Li, J., Tian, K., and Guan, H.
High performance network virtualization with SR-IOV. In
IEEE International Symposium on High Performance
Computer Architecture (HPCA) (2010).

[16] Dong, Y., Yu, Z., and Rose, G. SR-IOV networking in
Xen: architecture, design and implementation. In USENIX

Workshop on I/O Virtualization (WIOV) (2008).

[17] Dovrolis, C., Thayer, B., and Ramanathan, P. HIP:
hybrid interrupt-polling for the network interface. ACM
SIGOPS Operating Systems Review (OSR) 35 (2001),
50–60.

[18] Fitzpatrick, B. Distributed caching with memcached.
Linux Journal, 124 (2004).

[19] Gavrilovska, A., Kumar, S., Raj, H., Schwan, K.,
Gupta, V., Nathuji, R., Niranjan, R., Ranadive, A., and
Saraiya, P. High-performance hypervisor architectures:
Virtualization in HPC systems. In Workshop on
System-level Virtualization for HPC (HPCVirt) (2007).

[20] Intel Corporation. Intel 64 Architecture x2APIC
Specification, 2008.

[21] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 2010.

[22] Itzkovitz, A., and Schuster, A. MultiView and
MilliPage—fine-grain sharing in page-based DSMs. In
USENIX Symposium on Operating Systems Design &
Implementation (OSDI) (1999).

[23] Jones, R. A. A network performance benchmark (revision
2.0). Tech. rep., Hewlett Packard, 1995.

[24] Keller, E., Szefer, J., Rexford, J., and Lee, R. B.
Nohype: virtualized cloud infrastructure without the
virtualization. In ACM/IEEE International Symposium on
Computer Architecture (ISCA) (2010), ACM.

[25] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and
Liguori, A. KVM: the Linux virtual machine monitor. In
Ottawa Linux Symposium (OLS) (2007).

[26] Landau, A., Ben-Yehuda, M., and Gordon, A. SplitX:
Split guest/hypervisor execution on multi-core. In USENIX
Workshop on I/O Virtualization (WIOV) (2011).

[27] Lange, J. R., Pedretti, K., Dinda, P., Bridges, P. G.,
Bae, C., Soltero, P., and Merritt, A. Minimal-overhead
virtualization of a large scale supercomputer. In
ACM/USENIX International Conference on Virtual
Execution Environments (VEE) (2011).

[28] Larsen, S., Sarangam, P., Huggahalli, R., and
Kulkarni, S. Architectural breakdown of end-to-end latency
in a TCP/IP network. In International Symposium on
Computer Architecture and High Performance Computing
(2009).

[29] LeVasseur, J., Uhlig, V., Stoess, J., and Götz, S.
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