
Social Search and Discovery using a Unified Approach

Einat Amitay, David Carmel, Nadav Harel, Shila Ofek-Koifman,
Aya Soffer, Sivan Yogev, Nadav Golbandi

IBM Haifa Research Lab
Haifa 31905 Israel

{einat,carmel,nyh,shila,ayas,sivany}@il.ibm.com, nadav.golbandi@gmail.com

ABSTRACT
This research explores new ways for augmenting search and
discovery of relations between Web 2.0 entities using multi-
ple types and sources of social information. Our goal is to al-
low searching for all object types such as documents, persons
and tags, while also retrieving related objects of all types.
To realize this goal, we implemented a social-search engine
using a unified approach. In this approach, the search space
is expanded to represent heterogeneous information objects
that are interrelated by several relation types. We address a
novel solution based on multifaceted search which provides
an efficient update mechanism for relations between objects,
as well as efficient search over the heterogeneous data. We
describe a social search engine positioned within a large en-
terprise, applied over social data gathered from several Web
2.0 applications. We conducted a large user study with over
600 people to evaluate the contribution of social data for
search. Our results demonstrate the high precision of social
search results and confirm the strong relationship of users
and tags to the topics they were retrieved for.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
Social Search, multifaceted Search, enterprise search

1. INTRODUCTION
Recent Web 2.0 applications such as web logs (blogs), col-

laborative bookmarking systems, and social networks, intro-
duce new entities and relations, in addition to regular Web
pages. These new entities and relations may prove valu-
able in enhancing the search experience as potential search
results or by influencing ranking algorithms. In recent sur-
veys of activities of the online user population, 28% of online
Americans said they have tagged content like photos, news
stories or blog posts. On a typical day online, 7% of inter-
net users say they tag or categorize online content 1. 20% of

1Pew Internet & American Life Project. 28% of online

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

adult American users said they maintain a social networking
profile, while 8% of users said they maintain a blog 2. The
proliferation of Web 2.0 applications’ use in recent years is
creating a vast collection of textual entities that interrelate
in many ways and forms.

Web 2.0 entities relate to each other in several ways. For
example, documents may relate to other documents by refer-
encing each other; a user may relate to a document through
authorship relation, as a tagger, as an author, or as men-
tioned in the page’s content. A user may relate to other
users through social relations, such as friendship or work. A
tag relates to the bookmark it is associated with, and also
to the user who added it.

In this paper we present and evaluate novel methods for
leveraging social information to enhance search results as
well as to discover relations between Web 2.0 entities. The
approach we take leverages a unified representation of the
entities and their relations. We then use this intricate het-
erogeneous collection to establish an all encompassing social
search solution.

This social search solution allows querying for specific en-
tities as well as retrieving results of all relevant types.In
particular, in addition to standard search results, the sys-
tem returns users related to the query as well as tags that
are associated with relevant documents. These tags can be
further used to categorize the search results and to better
refine the searcher’s information need. The system addition-
ally facilitates further exploring the data by enabling queries
on the relation between the relevant people and additional
content they have contributed. We call such a multi-entity
search system based on “social” data a social search engine.

The concept of social search is used in the literature to
describe many different aspects of Web 2.0 search. For ex-
ample, [13] uses the term social search to search over a social
network. Such a search is focused on finding a path between
users in the network, or finding the set of closest users to
a given user in the graph. Commercial people search solu-
tions such as Wink [22], or Spock [19], provide search over
social networks as well. The relevant people to any given
person are derived directly from users’ input, such as social
bookmarking and voting.

Many shared bookmarking systems, such as del.icio.us [6]
provide social search capabilities over the system bookmarks,

Americans have used the internet to tag content. Lee Rainie,
January, 2007.
2Pew Internet & American Life Project. Digital footprints:
Online identity management and search in the age of trans-
parency. Mary Madden, Susannah Fox, Aaron Smith, and
Jessica Vitak, December 2007.



users and tags. Users can search over their own bookmarks
as well as over the public bookmarks of others. Such sys-
tems often provide relevant tags, as well as relevant results
to a query. Some systems also provide advanced search ca-
pabilities such as searching for similar-minded users based
on similarity of bookmarks. However, as far as we know,
there is no social search system that provides a unified ap-
proach for searching and retrieving entities of all types, as
our system does.

1.1 Our approach
In this research we explore novel ways to improve and

evaluate the usefulness of social search using available so-
cial information. The scope of our system and experimen-
tation is in the context of an enterprise, yet the methods
we present are generic. The social data we experiment with
includes records of users’ public activity with documents
such as bookmarking, tagging, rating, or comments made to
other public Web 2.0 entities. The system we describe al-
lows searching for any object type (e.g document, person or
tag) as well as retrieving all entity types for a given query.
To this end, the system supports standard textual queries
describing a specific information need, entity queries such
as searching for a specific user, or any combination of the
two. The system retrieves and ranks all the entities that
are related to the specified query. The research described
in this paper shows that as we hypothesized Web 2.0 infor-
mation is invaluable in an enterprise environment, where the
searchable content is normally of low quality. The large scale
experiment described herein is to the best of our knowledge
the first such proof point.

In terms of implementation, the social-search engine is
based on the unified search approach [23, 21, 20]. Uni-
fied search, also known as heterogeneous interrelated entity
search, is an emerging paradigm within information retrieval
(IR). In this approach, the search space is expanded to rep-
resent heterogeneous information about objects that may re-
late to each other in several ways. In addition to the direct
relations, the method finds indirect relations that are im-
plied from the direct relations. For example, documents are
directly related to people, and from this relation an indirect
relation between people is implied (e.g. a user is indirectly
related to another user if both are related to the same set
of documents).

Basing the enterprise social search solution on the unified
search approach requires a novel embodiment given the de-
mands from such a system. Specifically the system must
be scalable, responsive, and reflect the rapid update pat-
terns typical in Web 2.0 systems. Users tag documents and
comment on blogs much more often than a Web page is up-
dated. Furthermore, since these same users (and their peers)
are the ones that later search for content, they expect to see
the social search engine to make use of the new information
almost immediately. We describe in this paper a novel real-
ization of the unified search paradigm based on multifaceted
search [14]. This solution provides an efficient mechanism
for updating relations between objects, as well as efficient
search over the heterogeneous data. More specifically, our
solution represents each of the system’s entities (e.g. user,
web-page, tag) by a retrievable document, whereas direct
relations between entities are represented by marking one of
the elements as a “facet” of its counterpart. The strength
of the relationship between the two objects is expressed by

a new construct that represents the strength of document-
facet relationship.

The multifaceted based approach provides an elegant and
efficient update mechanism since only direct relations be-
tween objects need to be updated when new entities are
added (in contrast to methods that model and store all rela-
tionships). Indirect relations that are dynamically induced
from the direct relations are computed on-the-fly during
query execution time. The system is efficient at run time
since directly-related objects are retrieved and scored us-
ing the search engine’s regular scoring mechanisms, while
indirectly-related entities are retrieved and scored using an
extremely efficient implementation of faceted search (which
is required in other domains to quickly count all instances of
results that fall into a given facet). In addition to being very
efficient, this mechanism allows a truly uniform approach to
all entity types and can be easily extended to additional enti-
ties.This novel implementation is new and critical to making
unified search a viable approach for large scale systems.

To test the validity of the system in the enterprise, we
have implemented and deployed the system in our organi-
zation. The system has been used by thousands of users
on a daily basis, oftentimes replacing the conventional en-
terprise search engine deployed in the enterprise. We report
here on a large user study in which we evaluate the effective-
ness of the search results compared to this base enterprise
search engine. In addition we evaluate the usefulness and
the quality of the related entities that are returned by the
social search engine, a feature that is not currently available
in traditional search engines. The results are extremely en-
couraging. The basic search results returned by the social
search engine are significantly better than those of the en-
terprise search engine. Furthermore the related people and
tags are shown to be very relevant and accurate to the users
query.

To summarize the main contributions of the paper are as
follows: (a) Definition of system and algorithms that lever-
age Web 2.0 information to improve search results in an
enterprise setting, and can also be used more generically;
(b) A novel realization of the unified search approach, that
can scale and meet the demands of a large enterprise search
system; (c) A large scale experiment that shows that the
proposed approach significantly improves search results as
well as enables finding relevant people and tags.

1.2 Paper outline
The rest of the paper is organized as follows: Section 2

briefly summarizes related work, focusing on existing social
search solutions. Section 3 describes the implementation
of our social search solution using multifaceted search. In
Section 4 we describe the implementation of our social search
solution over enterprise Web 2.0 data gathered from many
sources and applications. Section 5 presents the results of
the user study we conducted to evaluate our search engine.
Our results demonstrate the effectiveness of social search
in the enterprise. We also report on the results of several
ranking alternatives for social data. Section 6 concludes and
discusses further research directions.

2. RELATED WORK

2.1 Social Search
The advent of Web 2.0 services has opened several new



research directions in the IR field related to social search.
One direction focuses on optimizing Web search using social
data gathered from social bookmarking systems [2, 24]. The
lesson from these studies is that the set of annotations pro-
vided by the public is usually a good summary of the page’s
topics hence it can be used to enrich the page content. This
approach is similar to using anchor text, or other meta-data,
as an additional indexing resource for the documents. Hey-
mann et al. [9] analyzed a large sample of bookmarks from
the del.icio.us social bookmarking system [6] and report that
tag terms occur in over 50% of the pages that they anno-
tate, and in only 20% of cases they do not occur in the page
text, backlink page text, or forward link page text of the
pages they annotate. In addition, the number of annota-
tions of a Web page usually reflects its popularity hence it
can be used as an additional evidence of document quality
for better ranking of search results.

Social data also enables new search services such as search-
ing for people in a social network [13]. People can search
for other people with whom they maintain relationships in
the network. The social network is modeled as a graph,
where the nodes represent individuals, and a weighted edge
between nodes indicates direct relationship between the in-
dividuals. In this context, search ranking may depend on
the distances among users in the graph.

2.2 Social Ranking
Social ranking, in the context of this work, deals with

ranking all entities retrieved by the social search engine.
Hotho et al. [10] describe FolkRank, a variant of the semi-
nal PageRank algorithm, applied over the multi-entity graph
that is associated with the social data extracted from a col-
laborative bookmarking system. The FolkRank score of an
entity relates to the strength of its relations with other enti-
ties which are mutually reinforcing each other by spreading
activation. Thus, a document tagged with important tags by
important users becomes important itself. The same holds,
symmetrically, for tags and users.

Similarly, Bao et al. [2] describe another PageRank like
algorithm, SocialPageRank, which captures the popularity
of web pages, users, and annotations simultaneously based
on mutual relations. The main assumption behind this al-
gorithm is that “popular” web pages are bookmarked by
“up-to-date” users and annotated by “hot” annotations. In
addition, this work shows that combining the textual simi-
larity of the tags associated with a Web page to the query,
and the SocialPageRank score of that page, improves the
quality of the search results significantly.

In practice, however, applying PageRank-like computa-
tion depends heavily on graph size and is expected to be
very slow. Chakrabarti [4] presents HubRank which com-
putes and indexes certain random walk fingerprints for a
small fraction of nodes in the multi-entity graph. At query
time, a small “active” subgraph is identified, bordered by
nodes with existing indexed fingerprints. These fingerprints
are adaptively loaded and the remaining active nodes are
now computed iteratively.

Random walk approaches rank all entities in a uniform
manner. However, different entity types provide different
retrieval values for the searcher hence they should be ranked
according to their own characteristics. Users for example
should be ranked according to their authority and to their
social activity related to the desired topic, or alternatively,

according to their relationship strength with the searcher. In
contrast, tags are mostly useful for further refinement of the
information need hence they should be ranked accordingly.
Web-pages should be ranked according to their relevance
to the query, in addition to their authority. In this work
we experiment with several alternative ranking approaches,
tailored for the different entity types in the system.

2.3 Multi-entity search
Recently, several studies proposed to extend basic search

functionality by answering user queries with many types
of entities, in addition to the regular relevant Web pages.
Multi-entity retrieval is usually based on analysis of the re-
lationships between entities and documents relevant to the
query. The work described in [3] studies “object finder”
queries, i.e. retrieving the top-k objects mentioned in the
set of documents relevant to the query. The score of a tar-
get object is determined by aggregating the scores of all
relevant documents related to that object. Similarly, the
work described in [25] retrieves and ranks named-entities
(people, locations), mentioned in the relevant documents to
the query. Lou et al. [15] study “relationship queries” which
find relations between two entities, e.g., the connections be-
tween different places or the commonalities of people. The
relationship strength is based on the strength of relations
between the Web pages mentioning the two entities. Our
approach is strongly related to this direction of research. We
also retrieve and rank all desired entities related to the rele-
vant documents. However, our work extends this approach
to support searching for all object types and retrieving re-
lated objects of all types. Moreover, we will show that our
novel implementation which is based on multifaceted search
better deals with the efficiency challenges of these new re-
trieval tasks.

Searching over a multi-entity graph generalizes the social
search scenarios described above. In such a graph nodes are
entities (terms, documents, persons, annotations) and edges
are the relations between the entities. Minkov et al. [17]
calculate indirect relations between objects by a lazy ran-
dom walk on the graph. The walk propagates relationship
strength between nodes – accumulating evidence of relation-
ship over multiple connecting paths. SimFusion [23] uses a
Unified Relationship Matrix (URM) to represent this multi-
entity graph. Relations between two object types are rep-
resented via a relationship matrix Mij . The (k, l) entry of
matrix Mij represents the strength of the relation between
the object pairs (ok, ol) of types Oi and Oj respectively. The
URM matrix U encapsulates all matrices to provide a unified
representation of the unified search space:

U =

0
BBB@

M11 M12 . . . M1n

M21 M22 . . . M2n

...
Mn1 Mn2 . . . Mnn

1
CCCA

By iteratively computing over the URM, SimFusion inte-
grates relationships from heterogeneous sources when mea-
suring the similarity of any two data objects. Recently,
Wang et al. [21] conducted latent semantic analysis over the
URM matrix, identifying the most salient concepts in the
unified semantic space. In a recent work the same authors
describe the SHINE system which uses an extended vector
space model for measuring object similarity between users’



queries and the information objects, treating both the query
and objects as vectors in the unified space [20].

The URM matrix provides relationship strength between
any two directly related entities, along with a theoretically
elegant way to calculate indirect relations through matrix
multiplication. However, when implementing a social search
system with URM, there are two delicate issue to address.
The first is that for large multi-entity graphs, computation
of indirect relations through matrix multiplication could be
computationally expensive. The second issue is the dynamic
nature of the system – the rate of creation and update of
social relations between objects is expected to be very high,
hence efficient dynamic updates of relations between objects
should be designed and supported accordingly. In the fol-
lowing we describe the implementation details of our social
search solution and how it deals with those two issues.

3. IMPLEMENTATION
Our solution to unified search represents each object in

the system in two ways: (1) as a retrievable document, and
(2) as a facet (category) of all the objects it relates to. Each
direct relation between two objects is thus defined by at-
taching a facet representing one object to a document repre-
senting the other object. The relationship strength between
objects is represented by weighting the facet-document re-
lationship.

For example, consider a unified representation of a collab-
orative bookmarking system. In this system we deal with
three object types – bookmarked Web objects (Web-pages),
taggers (users), and tags. Each object type is associated
with a corresponding document - a Web-page document, a
user document and a tag document. The content of a Web-
page document would include the content of the Web object
it represents, as well as all the tags and the descriptions that
users have associated with the Web object. The content of
a user document would include publicly available informa-
tion about the user such as name, title, hobbies, projects,
papers. A tag document will contain only the tag. We can
consider three obvious relationship types in such a system.
Each relation will be represented as a facet as follows:

• The relationship between a user and the tagged Web-
page is represented as a user-type facet of the corre-
sponding Web-page document.

• The relationship between a tag and the associated Web-
page is represented by a tag-type facet of the Web-page
document.

• The relationship between a user and a tag used for
bookmarking is represented as a user-type facet of the
corresponding tag document.

Recall that the system allows searching for specific objects
as well as for all objects relevant to a textual query. When
searching for a certain object, the result set will contain all
entities related directly as well as indirectly to that object.
The directly related objects are extracted by retrieving all
entities for which the desired object serves as their facet.
Their score is determined according to the strength of the
relationship with the target object. When executing a tex-
tual query, all directly related objects will be retrieved and
scored by the underlying search system, since each object is
represented by a textual document. In both cases, the in-
directly related objects are extracted by computing the set

of facets related to the direct results. In the following we
describe the scoring mechanism for indirect objects based
on our multifaceted search implementation and show that
our scoring mechanism is equivalent to the unified search
implementation that is based on matrix multiplication.

3.1 Scoring indirectly related objects
In the unified search framework, the strength of the indi-

rect relation between object o1 and o2 is determined by:

Score(o1, o2) =
X

o

U(o1, o) · U(o, o2) (1)

where U(o, o′) is the corresponding entry in the URM ma-
trix. This computation is equivalent to squaring the URM
matrix which provides the relationship strength of order two
between any two objects in the multi-entity graph.

Equation 1 can be generalized to score objects based on
their indirect relations with any query. For a textual query q,
we can score all objects according to their textual similarity
to q, since every object is represented by a textual document.
For an entity query o we can score all objects according to
their direct relationship strength with o. The following score
vector, ~s0(q), provides the (direct) scores of all N objects in
the system to the query:

~s0(q) = (s0(q, o1), . . . , s0(q, oN ))

By multiplying this score vector with U , all objects are
scored based on their indirect relationship with q:

~s1(q) = U · ~s0(q) (2)

Note that Equation 2 can be employed iteratively to com-
pute higher order relationships in the entity graph.

In addition, objects can be scored according to their rela-
tive popularity, or authority. Such query independent scores
can be determined by the FolkRank [10], or SocialPageR-
ank [2] algorithms, as described in Section 2, or alternatively
by the inverse entity frequency score (ief) [25]:

ief = log(
N

No
) (3)

where N stands for the number of all objects in the system
and No stands for the number of objects directly related to
o. Similarly to the vector-space idf score for terms, the ief
score “punishes” objects that are related to many objects in
general, hence are less specific for a given query. The final
score of object o for query q is determined by multiplying
the query dependent score with the object static score:

Score(q, o) = s1(q, o) · ief(o) (4)

The implementation of Equation 2 requires two stages: 1)
retrieve and score objects that are directly related to the
query; and 2) multiply the score vector by the URM ma-
trix to retrieve indirectly related objects. In order to enable
search in reasonable time, this computation must be effi-
cient and scalable. The rest of this section describes how
we extend and utilize an efficient multifaceted search im-
plementation in order to retrieve and score indirect results,
while still maintaining the sub-second response time that
users are expecting from a modern search engine.

3.2 Multifaceted Search
Multifaceted search aims to combine the two main search

approaches in IR:



• Navigational Search, which uses a hierarchy structure
(taxonomy) to enable users to browse the information
space by iteratively narrowing the scope of their quest
in a predetermined order

• Direct Search, which allows users to simply write their
queries as a bag of words in a text box

In a typical multifaceted search interface, users start by en-
tering a query into a search box. The system uses this query
to perform a full-text search, and then offers navigational
refinement on the results of that search by categorizing the
search results into predefined facets along with the counts
of results per facet. Users are able to refine their query
by narrowing the search into several of the identified facets.
Multifaceted search has become the prevailing user interac-
tion mechanism in e-commerce sites and is being extended
to deal with semi-structured data, continuous dimensions,
and folksonomies.

Our unified search implementation is based on a multi-
faceted search library [14] developed on top of the open-
source Java search engine, Lucene[1]. This library includes
several novel features including flexible and dynamic aggre-
gation over faceted data. It not only counts the number of
results across several facets, but also supports richer aggre-
gations of numeric and Boolean expressions over the set of
results belonging to a given facet. The facets taxonomy is
built on the fly, implicitly inferring the facet hierarchy that
is inferred by the matching documents.

Rich aggregations and a dynamic taxonomy were prereq-
uisites and a key to implementing the Social Search engine
efficiently utilizing a multifaceted search library. Several fea-
tures however were still missing from the library which were
added as part of this implementation:

1. While previously the relation between a facet and a
document was binary (the facet could be either asso-
ciated to the document or not), it was crucial for the
system to additionally associate a weight with the re-
lation. This weight is now stored along with the facet.

2. While previously the system returned a non-ranked
set of documents per each facet, our implementation
requires that the related objects are returned and dis-
played in ranked order. The system now returns a
ranked list of all related documents to a facet query.

3. Given the dynamic nature of Web 2.0 activity, it was
important that updates be reflected almost immedi-
ately in the index. To support this requirement, we
implemented a mechanism that allows facets and nu-
meric fields to be attached to documents that have
already been indexed, whereas before they had to be
provided at indexing time (which required re-indexing
after updates).

4. In order to rank facets by both a dynamic and a static
score (e.g. based on popularity) we added a method to
associate query-independent static scores with facets.
This score is used to associate system objects with
their static score.

Our system supports three types of queries: entity queries,
textual queries, and hybrid queries. Entity queries consist
of a specific object (e.g. a user of the system), the in-
put of textual query is a regular term-based query, using

the search engine’s query syntax, and the input of hybrid
query is a combination of entity and textual queries. All
queries return list of directly related documents with asso-
ciated scores, which are later used to calculate indirect rela-
tions. For an entity query, the score reflects the relationship
weight between the matching document and the facet rep-
resenting the query object. For a textual query, the search
engine’s scoring mechanism is used, and for a hybrid query
the results of the sub-queries are combined using the search
engine’s support of Boolean operators, including separate
boosting of sub-queries. Note that for all query types the
scores of directly related objects are equivalent to the scores
as represented by ~s0(q).

The score of an indirectly related object, o, is computed
by aggregating its relationship strength with all matching
documents. multiplied by their direct score:

s1(q, o) =

NX
i=1

s0(q, oi) · w(o, oi)

where w(o, oi) is the relationship strength between the doc-
ument oi and its facet o. This computation is implemented
efficiently using our faceted-search library’s mechanism for
aggregating numeric expression over the set of matching doc-
uments related to a specific facet. It is easy to see that since
w(o, oi) = U(o, oi), this facet based computation is equiv-
alent to Equation 2. Finally, the “textual” score of each
indirectly related object is multiplied by its static score to
determine its final score, s1(q, oi) · ief(oi).

Indirectly related objects are represented by accumulating
all facets of the same type. The “user” facet, for example,
will include all users that are related to the matching doc-
uments, each associated with a score as computed by the
facet-based expression. Similarly, each facet, representing
one of the other object types, will include all related ob-
jects of this type associated with a score expressing their
indirectly related strength with the query object.

Note that an object may be related both directly and
indirectly to the query object. In this case it is possible
to combine the direct score with the indirect score of that
object, or maintain separate result sets for directly and in-
directly related objects. We implemented the latter, thus
the search results include all objects for which their asso-
ciated documents are directly related to the query, as well
as all indirectly related objects which are related to those
documents, scored according to Equation 4, and clustered
by their entity types.

Figure 1 shows examples of page results of our social
search application for a textual query and for an entity
query. The directly related documents are given on the left,
while indirectly related users and tags are given on the right.
By clicking on one of the retrieved users, or tags, the system
will execute a new hybrid query narrowing the original re-
sults to those that are directly related to the desired object.
We describe this application in more details in Section 4 .

Our current application calculates two levels of related-
ness. This is however an implementation choice for usability
purposes. The mechanism and algorithm enables continuing
this computation to as many levels as required by simply us-
ing the ranked list of indirectly related objects as the basis of
another multifaceted search query, thus traversing paths of
length 3 in the entity graph, and this iteration can continue
further.



Figure 1: Screen shots of the social search application. Directly related objects on the left and indirectly
related objects (users and tags) on the right. (Left): search results for a textual query. (Right): search
results for an entity query – all objects related to a specific user.

3.3 Efficiency Factors
Using multifaceted search to model the unified search com-

putation addresses the two issues raised earlier regarding
usage of the URM matrix for social search: 1) the need for
efficient computation of indirect relations and 2) efficient
dynamic updates. The efficient runtime calculation of nu-
meric expressions over facets, which in our system is used
for the computation of indirect relations, is described in full
details in [14]. In general, query execution time is a factor
of the extra time it takes to compute the indirect relations.
This time increases linearly with the number of the directly
related objects to the query. For the social search engine
that we have implemented inside our company (described
in the next section) that searches over more than 700,000
objects, most queries from all query types (including hy-
brid queries) are executed in sub-second time on a standard
machine (2.8GHz CPU, 2GB RAM). The universal query
(q =′ ∗′) that essentially retrieves all the objects indexed
by the system as well as all objects related to them, query
runtime is less than 4 seconds.

Efficient dynamic updates are handled by a mechanism
that enables post-indexing addition (and removal) of facets
and numeric fields to documents. This mechanism is im-
plemented by storing the changes in an external database.
When iterating over facets or numeric fields, database queries
are executed in addition to the regular Lucene iteration, and
the results of both are combined to supply the most up-to-
date data. This data is periodically rolled into the Lucene in-
dex in order to utilize Lucene’ data structures that are opti-
mized for fast iteration operations. Otherwise, over time we
would risk deteriorating query execution due to sub-optimal
performance of iterations in the database on large amounts
of data. This approach fits very nicely with Lucene’s index-
ing paradigm in which small indexes are created to support
rapid updates, and are then merged periodically into the
large index to assure optimal query performance. In a simi-
lar fashion, we merge the database content into the Lucene
index when Lucene performs its index merges, and thus the
database that contains only the most up-to-date updates

can be kept relatively small.

4. SOCIAL SEARCH WITHIN THE
ENTERPRISE

Searching for information within the enterprise is a major
concern since inefficient search results in costly productiv-
ity loss. Furthermore, effective people search services within
the enterprise, enables employees to easily identify individ-
uals that are able to assist them with their current tasks.
Albeit the advances in search technology over the years, re-
search shows that employees still spend a large percentage
of their time searching for information [8]. One of the rea-
sons for the relatively poor performance of existing search
solutions in the enterprise is the high complexity of the in-
formation space (diverse databases, knowledge management
tools, email systems etc.). Moreover, algorithms based on
link analysis are much less effective for the Intranet [7].

With the advent and pervasiveness of global enterprises,
the need for employees located in sites all over the globe to
share information and collaborate is ever increasing. Con-
sequently, Web 2.0 applications are taking off and becoming
popular in enterprise settings. These include virtual social
communities, wikis, collaborative bookmarking services and
blogs. The popularity of these applications outside the fire-
wall additionally contributes to their adoption by employees.
Using such applications results in a better sense of com-
munity and collaboration. Several Web 2.0 solutions have
indeed been developed recently for the enterprise domain
(e.g. [16, 11]). In the following we describe the social search
solution that we have implemented and deployed. This sys-
tem leverages the information gathered from existing Web
2.0 applications in IBM to improve enterprise search.

4.1 Social Data
We chose to base our solution on the most used Web 2.0

services that exist within IBM: Dogear [16] which is a col-
laborative bookmarking service used to bookmark and tag
pages both within and outside the Intranet; and BlogCen-



tral [11] which is a central blog service allowing all IBM
employees to publish and manage blogs within the Intranet.
We additionally used the enterprise directory and employee
profile application, called BluePages, to collect information
about 15,779 IBMers who are active in these applications.
At the time of writing (September 2008), these employees
have associated 373,821 bookmarks to 234,856 Web-pages,
and authored 77,930 blog threads. Our data thus comprises
about 700,000 unique entities.

As described in the previous section, each entity is repre-
sented by a retrievable document. Our application uses only
the data available through the chosen enterprise Web 2.0
services, and ignores all other sources of information in the
enterprise. The content of a bookmarked Web-page includes
its content and the users’ descriptions and tags as provided
by Dogear. The content of a blog document contains the
post entry, related comments, and the tags associated with
the blog. The content of a user document contains the user’s
public information (name, title, group, related projects), as
provided by Bluepages, and the content of a tag document
contains the tag string itself. Entities are connected by cor-
responding relation types. Users are connected to the pages
they bookmarked, to the tags that they provided, and to
their blog entries (as an author or as a commenter). Tags
are connected to their related documents. Each relation is
stored as a document-facet pair, with relationship strengths
expressed by the document-facet weighting mechanism.

4.2 The social search application
The social search application, codenamed Cow Search, is

available to all users of IBM’s Intranet. Figure 1 shows
screen shots of the search results for a textual query (left)
and for a user entity query (right). On the left of the screen
we see the documents that are directly related to to the
query (marked by (2)). The “related users” list, marked
by (1), shows the list of people found to be related to the
set directly related documents. The tag cloud marked by
(3) shows the frequency of tags used to describe the set of
retrieved documents; and (4) includes additional facets that
can be used to further explore the results.

The directly related search results include a mix of blogs,
bookmarked pages, and personal profiles (not shown in the
figure for privacy reasons). As described in Section 3, for a
textual query all relevant documents are scored according to
their relevance to the query (as provided by Lucene)3. For
an entity query (a user or a tag query) documents are scored
according to their relationship strength with the queried
entity. For all query types the document’s textual score
is multiplied by the document’s independent static score,
ss(d) = log(X + 2), where X is the number of the page’s
bookmarks and comments.

The list of related users shows people that bookmarked
a relevant document, posted a relevant blog entry, or com-
mented on such an entry. Users are scored by Equation 4,
while their static score is set according to their ief score
(see Equation 3). It is important to note that those users
are not necessarily experts on the topic. True experts who
never bookmarked nor blogged will not be retrieved by our
system. However, the set of retrieved users, who found the
topic’s related material interesting enough to tag it or blog
on the topic, can be considered a virtual community of em-

3Directly related tags are excluded from the list of direct
search results.

ployees sharing common interests on the topic at hand.
The set of related tags are represented by a tag cloud

which is a list of tags related to the retrieved documents.
Tags are scored exactly the same as users, according to their
relationship strength with the retrieved documents which
depends on the number of times the tag has been associated
with the document by different users, and according to their
ief score. The tag score controls its font size in the cloud.
In addition the system provides several other facets (marked
by (4) in Figure 1) for supporting easy navigation within the
search results.

5. USER STUDY
A significant part of this research includes testing the ef-

fectiveness of social search in the enterprise. Our goal was
to measure both the quality of the returned document set
(Web pages, blog entries) as well as the related users and
tags. While evaluation methodologies for documents are
well known and have standard measures, there are still no
standard ways of measuring the quality of related users and
tags.

A user study was thus used to measure both aspects of our
system. We logged all interactions with the application to
obtain information about its usefulness and to trace usage
patterns. From the query log of the application we arbitrar-
ily chose 50 queries and ran them to receive a ranked list
of 30 documents and the top 100 people for each query, us-
ing our baseline algorithm. The documents retrieved were
examined and marked with three relevance levels (0-not rel-
evant, 1-marginally relevant, 2-highly relevant) , and the
quality of search results was measured by the normalized
discount cumulative gain (NDCG) measure over the 50 se-
lected queries. NDCG considers the ranking of retrieved
objects in addition to their associated relevance levels [12].

To evaluate the effectiveness of the related people results,
we emailed the people retrieved by the system a list of the
queries they were associated with, and some topics selected
randomly, and asked them to rate on a Likert scale of 1 to 5
how relevant they think the topic is to them. We intention-
ally left the definition of relevance vague to address all kinds
of relevance. According to responses we received during the
experiment people conceived relevant to them as being rel-
evant to their work in general, their current project, their
personal interests, or the interests of their team. We also did
not reveal the nature of the experiment or how the topics
were generated. All people polled were sent a list of topics
they were not related to in addition to those they appeared
related to. Thus all people potentially had both relevant
and irrelevant topics to rate.

We chose email rather than using a Web survey because
we thought people will be more obliged to answer an email
directed to them. Emails also allowed us to disassociate the
application itself from the topics and hence increasing the
likelihood of truthful answers not dictated by our ranking
scheme. We sent over 1400 emails for which 612 unique
people replied with ratings. Those people come from 116
IBM locations in 38 countries and we assume most of them
have no knowledge of each other or of our application.

From the replies we generated 8835 vote pairs of user
and self-rating for 50 topics. We thus created a benchmark
against which we evaluated our algorithms 4. We measured

4We ignored retrieved users who did not answer the survey.



the NDCG of the related user list, averaged over the set
of topics, using the 1-5 scale of user feedback as different
relevance levels. For the NDCG calculation we used gains
(0,1,3,6,10), for the 5 scale levels respectively, and the dis-
count function used was −log(rank + 1).

Despite our survey’s breadth, it is somewhat biased by
self-rating. Our original attempt to ask people to rate other
people’s interest in various topics failed, because most re-
spondents simply did not know enough about each other.
Consequently we settled for asking people to rate their own
interests. Self-esteem and different interpretations of the in-
structions inevitably lead to different people attaching dif-
ferent meanings to the 5 levels of the rating scale. Some
people tend to over-estimate their interest in every topic,
while others tend to under-estimate it. In most cases, this
issue can be thought of as rating noise that is canceled out
by the large number of respondents. But it can still bias
some measurements. In particular, our ief feature is specifi-
cally designed to downplay people who over-represent their
interests — contrary to those people’s self-rating.

5.1 Results

5.1.1 Social data contribution to enterprise search
In the first experiment we measured the contribution of

social data to the quality of enterprise search. Social data af-
fects the search results in several ways. First, social feedback
identifies the most authoritative resources in the enterprise,
assuming employees comment, bookmark, and tag only high
quality pages. Second, the content of a document indexed
by our system includes the comments and descriptions peo-
ple associated with the original document. Therefore, social
content is expected to improve search effectiveness similarly
to other meta-data resources [7]. Third, a document’s static
score depends on the number of bookmarks and comments
that a page has in our social data collection, therefore, pop-
ular documents will be ranked higher.

We measured the quality of search results by manual as-
sessments of the top search results for the 50 chosen queries 5.
Table 1 shows the NDCG(15) and the precision at top k
(p@k) results, while considering the 3 relevance levels for
NDCG computation, and assuming each positive level as
relevant for the p@k computations.

NDCG(15) p@1 p@5 p@10
1. Enterprise search 0.48 0.44 0.4 0.38

2. Content-Data (CD) 0.29 0.39 0.30 0.26
3. Social-Data (SD) 0.61 0.60 0.60 0.57
4. SD+
static-scores(SS) 0.70 0.76 0.70 0.67
5. CD + SD 0.49 0.45 0.36 0.31
6. CD + SD + SS 0.53 0.65 0.56 0.5

Table 1: The precision of the top directly related
results, as measured by p@k and NDCG

The first row in the table shows the results of the ex-
isting IBM enterprise search engine over the set of topics.
This is the official search engine for the IBM Intranet and
is regularly used by IBM employees for their daily tasks.

5For each query, all top documents retrieved by all ap-
proaches were pulled together and evaluated by the same
assessor.

This tool indexes all Intranet pages based on their con-
tent and page authority, where authoritativeness is deter-
mined by link analysis. Currently, it does not exploit any
social data, however it includes a feature called quick links,
which enables administrators to manually insert search re-
sults for popular queries in much the same way that com-
mercial search engines show advertisements. The precision
results of the current enterprise search system are given as
a basis for comparison.

The second row shows the results of our social search en-
gine when only the content of annotated documents is used
for indexing (ignoring tags and descriptions provided by the
annotators). The third and fourth rows show the results
when the same set of annotated documents were indexed us-
ing the social tags and descriptions only while ignoring doc-
uments’ content, without and with static scores respectively
(recall that static scores are query independent scores). The
fifth and the sixth rows show the results when indexing both
social data and content for the same set of documents with-
out and with static scores, respectively.

The first observation from these results, looking at the
second row, is that searching only over the content of the
annotated documents reduces precision significantly, even
below the baseline as determined by the existing enterprise
search engine. Focusing the search on the set of annotated
documents while ignoring the annotations themselves seems
to fail. However, using the annotations for indexing (row 3)
and adding page popularity (row 4), improves the precision
to be statistically significant better than all other runs (one-
tailed paired t-test, p = 0.002).

The second observation, in agreement with previous work [2],
is that static scores which reflect document popularity im-
prove the search results when combined with textual scores.
This is true when adding the static scores to the social-data
index (row 3 and 4) as well as when adding static scores to
the social-data and content index (row 5 and 6).

The third observation from these results is that adding
the annotated data to the raw content of documents im-
proves the search precision significantly (comparing rows 2
and 5). In this experiment we integrated the raw content
and the social annotations by concatenating the two texts.
However, it seems that this approach does not work well,
given that searching over social data only (row 4) is better
than searching over content and annotations together (row
6). This is most likely due to the quality of the content
(which is very noisy), and to the sub-optimal weighting of
the social data compared to the content. The challenge of
finding an optimal integration policy for content and social
annotations is left for future work.

The significant improvement in precision when using so-
cial information to rank pages compared to the baseline,
clearly demonstrates the value of the social search engine.
While existing enterprise search solutions struggle with noisy
datasets and lack of link data and thus have difficulties in
retrieving high quality results, the documents annotated by
social data gathered by the Web 2.0 tools enable the social
search engine to take advantage of the “wisdom of crowds”
and provide much more precise results.

5.1.2 Related users
The second experiment evaluated whether users retrieved

by the social search system are indeed related to the submit-
ted queries. We used the results of the user study described



above where each retrieved user was asked about his inter-
ests in a list of topics containing the topics he was associated
with, and a list of random topics he was not associated with.
Table 2 shows the NDCG of the top k users, k = 10, 20, 30,
measuring the agreement of retrieved users with the system
judgment (i.e. ranking) of their relatedness to the searched
topics. We compare several ranking schemes. The first row
provides the results when users are ranked by simply count-
ing the number of the documents related to them in the
result set. The second row shows the results when users are
ranked by summing the score of documents related to each
of the users. The third row shows the results when associ-
ating “optimal” weights to the relation types between users
and documents. Optimal weights were found by exhaustive
search using the Downhill simplex method [18], using a sam-
ple of the marked data for training. The optimal relative
weights found were (1, 3.1, 0) for the relation types (“tag-
ger”, “blogger”, “commenter”), respectively. In the last row
we multiplied the user’s score by the ief static score. This
row represents the full user scoring mechanism as expressed
by Equation 4.

NDCG
Ranking 10 20 30
1. count-only 0.71 0.69 0.68
2. sum of doc scores 0.75 0.73 0.72
3. +relationship weighting 0.76 0.74 0.73
4. +user’s ief 0.77 0.76 0.74

Table 2: The agreement between retrieved users
and the system ranking of their relatedness to the
searched topics, as measured by NDCG of top k re-
sults

There are several interesting insights from these results.
First, the results exhibit increasing agreement as we consider
document scores, optimal relative weights for the different
relation types, and user static scores. The results while us-
ing the full scoring function, including users’ ief (row 4), are
statistically significantly better than count-only and sum of
doc-scores (one-tailed paired t-test, p = 0.05), but are not
significantly better than ignoring user static scores (row 3).
Second, the optimal weight for commenter-document rela-
tion type in this experiment was found to be zero. This
means that users who comment on a blog entry are not nec-
essarily related to the blog’s topic. While we do not have
full explanation for this result, we speculate that there are
users who comment to a blog not because of its content but
rather because of its popularity. This phenomenon should
be further investigated.

5.1.3 Related tags
The last experiment measured whether tags retrieved by

the social search system are indeed related to the submit-
ted queries. The evaluation was done using the Normalized
Google Distance (NGD) [5], which is a measure of seman-
tic interrelatedness between terms derived from the number
of hits returned by a search engine. Terms with the same
or similar meanings in a natural language sense tend to be
“close” while words with dissimilar meanings tend to be far-
ther apart.

For each query we found a large number of related tags
using several different tag scoring formulas. Then, for each

query-tag pair, we performed the following three queries in
IBM’s enterprise search engine: a) the query alone, b) the
tag alone and c) the query and tag together. The num-
ber of results for each of the queries along with the total
number of documents in the search index defines the NGD
between the query and the tag. NGD scores are in the range
[0,1], with lower values for closer terms. In order to perform
NDCG tests, we translated the (continuous) NGD score to
a (discrete) relevance level as follows: each NGD score was
multiplied by 10, rounded to the closest integer, and then
subtracted from 10. The resulting scores are integers from
0 to 10, with higher values for closer terms. Thus, tags are
marked by a relevance degree according to their semantic
distance from the query.

Table 3 shows the NDCG of the top k tags, k = 10, 30, 50,
measuring the agreement between the relevance level of re-
trieved tags with the system judgment (i.e. ranking) of their
relatedness to the searched topics. We compare the results
using different ranking schemes. The first row provides the
results when tags are ranked by only counting the number
of their related documents. In the second row we ranked
tags by summing the score of related documents to each of
the tags, and in the third the score is multiplied by the tag’s
ief. In the last row, in addition to multiplying by the ief,
we multiplied each related document score by the number of
times the tag is used to describe that document. This row
represents the full user scoring mechanism as expressed by
Equation 4.

NDCG
Ranking 10 30 50
1. count-only 0.617 0.688 0.736
2. sum of doc scores 0.617 0.689 0.736
3. +ief 0.681 0.745 0.777
4. +relationship weighting 0.672 0.753 0.784

Table 3: The agreement between the semantic dis-
tance of retrieved tags to the query with the system
ranking of their relatedness, as measured by NDCG
of top k results. Tag semantic distance to the query
was measured by NGD.

The results show a very high correlation between the tags
and the query, thus corroborating the hypothesis that tags
related to the set of documents are also highly related to
the query. The results also show that the tag’s ief is an im-
portant factor in improving tag retrieval. There are several
tags that are very popular overall, but do not distinguish
one query from the other (e.g. “IBM”). The results while
using ief (row 3), are statistically significantly better than
all other runs (one-tailed paired t-test, p = 0.05). The last
row shows that the agreement is slightly lower when using
the relationship weight between documents and tags.

6. SUMMARY
This work addresses new ways for augmenting search and

discovery using multiple types and sources of social informa-
tion. We described a social search solution using a unified
approach in which all system entities are searchable and re-
trievable. Our solution has been implemented using a mul-
tifaceted search library which provides an elegant solution
to discovering indirect relations between objects.



Our social search engine has been deployed within a large
enterprise, applied over social data gathered from several
Web 2.0 applications. We conducted a large user study to
evaluate the contribution of social data for search. The re-
sults reveal that social data is valuable in several ways. At
first, the high precision of top retrieved documents demon-
strate that user feedback identifies high quality content in
the corpus thus focuses the search to valuable data only.
Second, user comments and tags are highly valuable in gen-
eral and augment the description of system entities, as well
as providing additional evidence for object popularity. The
results of the user study we conducted confirmed that users
related to a query, as determined by the system, indeed have
interest with the topic they were retrieved for. Similarly, so-
cial tags retrieved by our system are strongly related to the
query, as measured by a semantic distance measure.

Our social search framework can be extended in several
directions. Emerging object types and relations in new com-
ing social services can be easily integrated into our system.
In particular, social networks that provide personal relations
between individuals can be further exploited for search per-
sonalization. Personal relations can bias the ranking of enti-
ties related to the searcher’s close community. For example,
related users can be ranked according to their distance from
the searcher in the social network graph, in addition to their
relationship strength with the query. Our system can also
be used for recommendation. Documents can be recom-
mended to a searcher based on their relationship strength
with similar users with common interest. Similarly, tags can
be recommended to a tagger based on their relations with
similar taggers, or with similar documents.

Another direction for further research is to quantify the
contribution of social objects to the effectiveness of the search
system. While related users and tags seems to be very valu-
able, as complementary facets to regular search results, we
still do not have good evaluation methodology to measure
their direct contribution. This issue is still open and left for
further research.

7. REFERENCES
[1] Apache Lucene. http://lucene.apache.org/java/docs/.

[2] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotations. In WWW ’07:
Proceedings of the 16th international conference on World
Wide Web, pages 501–510, New York, NY, USA, 2007. ACM.

[3] K. Chakrabarti, V. Ganti, J. Han, and D. Xin. Ranking objects
based on relationships. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on
Management of data, pages 371–382, New York, NY, USA,
2006. ACM.

[4] S. Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 571–580,
New York, NY, USA, 2007. ACM.

[5] R. Cilibrasi and P. M. B. Vitányi. Automatic meaning
discovery using google. In Kolmogorov Complexity and
Applications, 2006.

[6] del.icio.us. http://del.icio.us/about/.

[7] P. A. Dmitriev, N. Eiron, M. Fontoura, and E. Shekita. Using
annotations in enterprise search. In WWW ’06: Proceedings of
the 15th international conference on World Wide Web, pages
811–817, New York, NY, USA, 2006. ACM.

[8] D. Hawking. Challenges in enterprise search. In ADC ’04:
Proceedings of the 15th Australasian database conference,
pages 15–24, Darlinghurst, Australia, Australia, 2004.
Australian Computer Society, Inc.

[9] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social
bookmarks improve web search? In WSDM ’08: Proceedings of
the First ACM International Conference on Web Search and
Data Mining, New York, NY, USA, 2008. ACM.

[10] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and ranking. In
ESWC ’06: , Proceedings of the 3rd European Semantic Web
Conference, pages 411–426, 2006.

[11] J. Huh, L. Jones, T. Erickson, W. A. Kellogg, R. K. E.
Bellamy, and J. C. Thomas. Blogcentral: the role of internal
blogs at work. In CHI ’07: CHI ’07 extended abstracts on
Human factors in computing systems, pages 2447–2452, New
York, NY, USA, 2007. ACM.

[12] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions of
Information Systems, 20(4):422–446, 2002.

[13] J. Kleinberg. Social networks, incentives, and search. In SIGIR
’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 210–211, New York, NY, USA,
2006. ACM.

[14] R. Lempel, O. Ben-Yitzhak, N. Golbandi, N. Har’El, S. Yogev,
D. Sheinwald, B. Sznajder, S. Ofek-Koifman, E. Shekita, and
A. Neumann. Beyond basic faceted search. In WSDM ’08:
Proceedings of the First ACM International Conference on
Web Search and Data Mining, New York, NY, USA, 2008.
ACM.

[15] G. Luo, C. Tang, and Y. li Tian. Answering relationship
queries on the web. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages 561–570,
New York, NY, USA, 2007. ACM.

[16] D. R. Millen, J. Feinberg, and B. Kerr. Dogear: Social
bookmarking in the enterprise. In CHI ’06: Proceedings of the
SIGCHI conference on Human Factors in computing systems,
pages 111–120, New York, NY, USA, 2006. ACM.

[17] E. Minkov, W. W. Cohen, and A. Y. Ng. Contextual search
and name disambiguation in email using graphs. In SIGIR ’06:
Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 27–34, 2006.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 1994.

[19] Spock. http://www.spock.com.

[20] X. Wang, J.-T. Sun, and Z. Chen. SHINE: Search
heterogeneous interrelated entities. In CIKM’07: Proceedings
of the 29th annual international ACM SIGIR conference on
Information and Knowledge Management, New York, NY,
USA, 2007. ACM Press.

[21] X. Wang, J.-T. Sun, Z. Chen, and C. Zhai. Latent semantic
analysis for multiple-type interrelated data objects. In SIGIR
’06: Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 236–243, New York, NY, USA,
2006. ACM Press.

[22] Wink. http://wink.com/wink/about.

[23] W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and
D. Zhuang. SimFusion: measuring similarity using unified
relationship matrix. In SIGIR ’05: Proceedings of the 28th
annual international ACM SIGIR conference on Research
and development in information retrieval, pages 130–137, New
York, NY, USA, 2005. ACM Press.

[24] Y. Yanbe, A. Jatowt, S. Nakamura, and K. Tanaka. Can social
bookmarking enhance search in the web? In JCDL ’07:
Proceedings of the 2007 conference on Digital libraries, pages
107–116, New York, NY, USA, 2007. ACM.

[25] H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Ciaramita, and
G. Attardi. Ranking very many typed entities on wikipedia. In
CIKM ’07: Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management,
pages 1015–1018, New York, NY, USA, 2007. ACM.


