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Abstract

Tomography deals with reconstruction of den-
sity profiles of planar objects given their X-ray
projections. Typically, projections in a large
number of directions are required for an ap-
proximate reconstruction. Geometric Tomog-
raphy limits the discussion to planar shapes
and measurable sets with a constant density.
This allows for developing a theory on the pos-
siblility for unique reconstruction from projec-
tions in a small, finite, number of directions.

In this paper, we review briefly some im-
portant results of Geometric Tomography, and
in particular Gardner’s algorithm for recon-
structing planar convex objects from projec-
tions in four directions. We then present a
new reconstruction algorithm called Minverse.
This method allows for flexible “practical re-
construction”, using any number of projection
directions, and it is not limited to convex ob-
jects. We demonstrate the use of the algorithm
on various examples, with varying number of
projection directions, and successfully recon-
struct non-convex star-shaped objects, objects
with one or two holes, and disconnected sets.

The experimental results from our imple-
mentation of Minverse seem to suggest that
unique reconstruction is possible in practice
in more cases than previously suggested and
proved theoretically.

1 Introduction

Tomography deals with the reconstruction of
a slice (a planar section) inside a body, using
information from X-rays. Since we are recon-
structing slices, we restrict our discussion to
planar bodies. One X-ray gives the amount of
mass it has passed, and we’ll use the term pro-
jection in a given direction to denote the infor-
mation coming from radiating the body with
all X-rays parallel to the given direction. We
shall say that a body can be uniquely recon-
structed from its projections, among a certain
family of bodies, if there is no other body in
that family giving the same projections as the
given projections.

Most studies of Tomography assume the
density function (giving the density at every
point) is general, and the result is that pro-
jections from an infinite number of directions
are needed in order to guarantee a unique re-
construction, or that projections from a finite
and large number of directions are needed in
order to allow a good approximate reconstruc-
tion, under certain assumptions. Another ap-
proach is to assume the body has a special
symmetry property (e.g., has cylindrical sym-
metry), and then the density function can be
reconstructed from a single projection. These
methods of Tomography are used very success-
fully in medical diagnosis (CAT scans) and for
non-destructive evaluation in the industry.



In Geometric Tomography (see [6] for a very
good and thorogh book on the broader sub-
ject) we assume that the body we want to re-
construct from its projections is a Geometric
set, i.e., one whose density is either 0 or 1 at
any point. Because our a-priori assumption
on the density function is stronger than that of
general Tomography, we expect to get stronger
results, and to be able to reconstruct sets from
a small number of projections.

It is not possible to reconstruct sets from a
projection in a single direction (it is easy to
change a set while keeping the projection in
one direction unchanged) and so it is reason-
able to ask what could be said from projec-
tions in two directions. The first result in this
area was that of Lorentz from 1949 [10], who
talked about the reconstruction of measurable
sets among the family of measurable sets. The
structure of sets that can be uniquely recon-
structed among measurable sets is completely
known: Lorentz showed a necessary and suf-
ficient condition for two function to be the
two projections from orthogonal directions of
some unknown measurable set, and a neces-
sary and sufficient condition for that set to be
unique. Later in [9, 4], necessary and sufficient
conditions were also found for a given set to
have unique reconstruction from two orthog-
onal projections: A structure called switching
component was defined, such that a set can be
uniquely reconstructed from its two orthogo-
nal projections if and only if it does not con-
tain any switching component. Two other set
properties were found to be equivalent to the
possibility of unique reconstruction from two
orthogonal projections: inscribability and ad-
ditivity. These two properties allow for eas-
ier testing if a given set can be uniquely re-
constructed among measurable sets. Also, a
formula was found for the reconstruction, in
case a unique reconstruction exists from two
orthogonal projections.

Weaker results are known about the recon-

struction of measurable sets from three or
more projections: it is known [10] that there
is no finite set of directions that allows unique
reconstruction of every measurable set, so we
are interested, as before, in conditions on sets
that guarantee unique reconstruction given a
set of directions. If the definitions of inscriba-
bility, additivity and lack of switching compo-
nent are generalized to any finite set of direc-
tion, then these conditions can be seen [6] to
be sufficient (but not necessary) for unique re-
construction of the set among the measurable
sets, from its projections in those directions.
Using these results we can give examples of
unique reconstruction: for example, an ellipse
is determined by its projections in any set of
three directions [6].

If we restrict ourselves to reconstruction
among a smaller family of sets, we expect to
get different theorems, and to more often be
able to uniquely-construct sets from a small
number of directions. Hammer, in 1961 [§],
raised the question of when can convex pla-
nar sets be reconstructed from their projec-
tions, among the family of convex planar sets.
Since then, many results have been published
in this area, although many open questions
remain. Some important known results: We
know a necessary and sufficient condition for
a finite set of directions to allow unique re-
construction of any convex body [7], and in
particular that sets of four directions (under
some condition) allow unique reconstruction
of any convex body. Three or less directions
are not enough for reconstructing every con-
vex body [7], but it was proved that given two
directions, most convex bodies (in the sense of
category) can be uniquely reconstructed [12].
We also know theorems of different kinds, e.g.:
A convex body can be verified by projections
in three directions (meaning that given a con-
vex body, we can choose three directions such
that any other convex body will give a differ-
ent set of three projections than that of the



original body) [5]. On the other hand, there
exists a convex polygon (a hexagon) that can-
not be verified from its projections in any two
directions [5].

Unfortunately, most of the questions of the
stability of the reconstruction problems are
open, so in many cases there is no theoretical
answer to the question of whether it is possi-
ble to reconstruct, in practice, certain bodies
from certain directions. However, we actually
implemented two algorithms for reconstruct-
ing sets from their projections that gave good
results in a large number of cases, so we conjec-
ture that in the future stronger stability theo-
rems will be proved, proving the usefulness of
the aforementioned algorithms.

The first algorithm for practical reconstruc-
tion of convex sets from their projections was
proposed by Gardner in [6, p. 47]. The algo-
rithm is limited to projections from four di-
rections, and does not have full theoretical
justification — its convergence and its stability
have not been proven. Nevertheless, when im-
plemented properly (see Nadav Har’El's MSc
thesis for some details missing from [6]) it does
appear to give good practical reconstruction.

2 Minverse

We propose and implement a new reconstruc-
tion algorithm which is not limited to a specific
number of projections (like Gardner’s algo-
rithm needed four projections), and can work
not only with convex shapes but also with
some generalizations explained below.

Our algorithm, which we named “Min-
verse”, solves the reconstruction problem by
minimization. The name Minverse is a con-
traction of the words minimization and inverse
(refering to the reconstruction problem as an
inverse problem).

The Minverse algorithm tries to reconstruct
a star-shaped set (actually, a generalization

that also includes the possibility of holes or
disconnected sets) given a finite number of X-
ray results, when the X-rays are not necessar-
ily directed in four different angles. The idea
of the Minverse algorithm is as follows: for a
certain guess-body we find the results of the
projections by the given X-rays, and we take a
norm measuring the distance between the re-
sult vector to the required result vector. We
try to minimize that norm while changing the
body, and declare success when the norm is
close enough to zero.

The Minverse algorithm can be used also
in cases where there is no uniqueness, and in
these cases Minverse finds one of the possible
reconstructions. For example, it is known that
a square cannot be uniquely reconstructed
from two projections, and indeed Minverse
found an additional shape — a star-shaped
but non-convex shape that wasn’t previously
mentioned in the literature (see Figure 2). In
cases where we do have a theoretical result
guaranteeing unique reconstruction, Minverse
did reconstruct the body despite the previ-
ously mentioned lack of a relevant stability
theorem. Also, in many cases where we do
not have a theorem guaranteeing or ruling
out uniqueness, Minverse did reconstruct the
original body, which makes us conjecture that
many uniqueness theorems exist that are still
waiting to be discovered. Among the shapes
we reconstructed using Minverse were con-
vex shapes, non-convex star-shaped shapes,
shapes with one or two holes, and even dis-
connected shapes.

2.1 The design of Minverse

In the introduction above, we gave a very brief
survey of results that guarantee the unique re-
construction of some body from its projection
in a certain set of directions. For example, we
saw that projections in four directions (with
some constraint on their choice) uniquely de-



termine any convex body (among the family
of convex bodies), and mentioned Gardner’s
reconstruction algorithm for this special case.

[2, 3, 1] found additional algorithms for spe-
cial cases: the first two show a heuristic al-
gorithm for the case of a convex body that is
symmetric relative to two axes, and the last
gives an algorithm for finding (only) round
holes in a convex body.

But there are other cases where we know
for certain that a unique reconstruction exists.
For example, we saw that given only two di-
rections, it is possible to uniquely reconstruct
most convex bodies among the family of con-
vex bodies, using the projections in these two
directions. The problem of classifying the con-
vex bodies that can be reconstructed using two
directions is still open, so a reconstruction al-
gorithm would be an insteresting research tool
in this respect.

There are possibly other cases where unique
reconstruction is possible, but a theorem guar-
anteeing it is not known yet. E.g., there are
no known theorems saying when it is possi-
ble to uniquely reconstruct connected, or star-
shaped set among the families of connected
or star-shaped sets, respectively. If we had
a reconstruction tool which can work in these
cases too, it might have been possible to come
up with conjectures about the uniqueness (or
non-uniqueness) in these cases.

This is why we developed a new reconstruc-
tion algorithm, which we named Minverse,
with the following goals in mind:

e It should be possible to reconstruct bodies
that are more general than convex bodies:
we defined (see below) a generalization
of star-shaped polygons, which we called
layered star-shaped polygons, which also
allow for polygons with holes or discon-
nected polygons.

e The reconstruction tool should get infor-
mation from any number of projections:

we will get a finite number of ray results,
which are given rays and the result of each
ray (the amount of mass the ray passed
through). These rays are not necessarily
directed in four different angles; In prin-
cipal, each ray can be in a different di-
rection and this tool can be used also for
point projections, but we didn’t pursue
this idea further in this study.

e The algorithm should look for a body
that, had we radiated it with the given
rays, would give the same ray results as
the ones given in advance. The tool would
not guarantee unique reconstruction: the-
oretical results might mean that in cer-
tain cases there is no reconstruction at all,
or there are reconstructions that are not
unique. When there are several possible
reconstructions, the algorithm will try to
find one of them.

The reconstruction algorithm we developed
is based on a minimization algorithm. A brief
description of the algorithm is as follows: For
some guess body we find the results of the pro-
jections of the given rays, and take a norm that
measures the distance of the results vector to
the vector of the required results. We then
try to minimize this norm while changing the
guess body, until the norm is close enough to
Zero.

We called this algorithm, which solves the
inverse projection problem (i.e., the recon-
struction problem) using minimization, ” Min-
verse”, from the words minimization and in-
verse. To summarize, Minverse is a general
method for reconstructing two-dimensional
bodies from their projections.

Obviously, for such a reconstruction algo-
rithm (or any other reconstruction algorithm,
for that matter) to work, it is not enough
to have unique reconstruction. We also need
the stability of the reconstruction problem be-
cause of the discretization in the algorithm (of



the body, the projections, and the directions).
Unfortunately, as we have already mentioned,
for most cases we do not know that the appro-
priate stability theorems are true. However, as
we shall see below, Minverse gave us the ex-
pected reconstructions in many examples, so
we conjecture that in the future new stability
theorems will be found that explain Minverse’s
good results.

2.2 Implementing Minverse

In the Minverse algorithm, we have star-
shaped polygons with a uniform density. This
uniform density should be known in advanced,
and so is the number of vertices in the poly-
gon (we will get a better approximation of the
body as we increase the number of vertices).
Each vertex will be at a predefined angle to
the polygon’s center, and its distance from the
center is the variable that the algorithm will
have to find. The center of the star-shaped
polygon is also a variable.

By using star-shaped polygons, rather then
convex polygons, we allow Minverse to recon-
struct a broader class of shapes. However, one
should note that in some cases we have a the-
orem that proves a unique reconstruction of
some convex shape within the class of con-
vex shapes, but not within the broader class of
star-shaped polygons. When one knows in ad-
vance that the sought-after body is convex, it’s
possible to modify Minverse to look for convex
shapes, by penelizing non-convex guesses (see
more about penalties below).

Actually, in Minverse we took more general
bodies, which we called layered star-shaped
polygons: layered polygons are constructed
from several filled polygons, each with its own
uniform density, that are layered one on an-
other — where in a point that is covered by
several interiors of polygons the density of the
body is taken as the sum of the densities of
these polygons. Using this formulation we can

have, for example, a unit-density square with
a small triangular hole, by taking a square
with density +1 overlayed with a small tri-
angle with density —1. Using layered poly-
gons we can also represent disconnected bod-
ies. Again, it is necessary to know in advance
the number of polygons and their densities,
before starting the Minverse algorithm.

To check how close a guess shape is to the
shape we’re looking for, we need an algorithm
to simulate a projection, i.e., an algorithm
that given a guess shape and a set of rays,
gives the density integral that each ray has
passed. The projection algorithm works in
a straightforward fashion, by finding the in-
tersection between the rays and the different
layers of layered-polygon, and then calculating
the mass each ray goes through.

The Minverse reconstruction algorithm is
basically a minization algorithm. It works by
iterating on the following sequence of opera-
tions: guessing a shape, determining the dis-
tance from the required shape (this will be
called the evaluation function) and improving
the guess. The method of improving the guess
is the minimization method itself, and for our
tests we used the Downhill Simplex Method
described in [11], which is a simple but robust
minimization algorithm that does not require
derivatives.

We shall now continue to discuss the rep-
resentation we used for the guess shape (i.e.,
the minimization variables), and its evaluation
function: We represent an unknown layered
polygon by determining in advance the num-
ber of layers, the density of each layer and the
number of points in it, and also the angles in
which these points are distributed around the
origin of the layer. The radii of these points,
as well as the origins of the layers, are the vari-
ables that represent the guess shape.

The evaluation function is given a set of rays
with the desired results, and the required type
of guess shape described above. The eval-



uation function is basically the sum of the
squared differences between the result of each
ray in the guess shape, and the desired re-
sult. However, sometimes we add penalties
to the evaluation function, to deter the min-
imization algorithm from straying into illegal
or unwanted parts of the parameter space (for
example, the radii should all be positive, and
negative radii are meaningless). When we find
a bad guess, we add a penalty to the evalua-
tion function, therefore causing the algorithm
to stay away from such bad guesses. In our
implementation of Minverse we added the fol-
lowing penalties:

1. A penlty on negative radii.

2. A penlty on deviation of the polygon from
a circle is added in the beginning of the
minimization to prevent uncoordinated
movement of the seperate points which
are all far from their correct positions.

The Downhill Simplex Method we use for
the minimization requires an initial guess sim-
plex, i.e., an one initial guess and N pertur-
bations on it, where N is the number of vari-
ables (we have one variable for each point on
a polygon, and two variables for each center
of a polygon). We tried various methods of
choosing these initial guesses, but the follow-
ing proved most useful: As an initial guess, all
polygons in the layered-polygon are taken as
circles, with their centers and radii taken using
a very rough guess from the projection data.
We take N perturbations on this initial guess,
by taking one perturbation for each variable:
a radius is perturbed by increasing it, and to a
lesser degree the neighboring radii (to prevent
very sharp spikes), and a center coordinate is
perturbed by increasing it.

The Downhill Simplex Method, as most V-
dimensional minimization methods, does not
guarantee finding a global minimum (in our
case a global minimum would have the value

0, or close to it because of the discretization).
The minimization might get stuck in a local
minimum or around a guess that is not close
enough to a correct solution. This is not only a
theoretical concern, and it actually happens in
real situations. One practical solution to this
problem is to stop the minimization once in a
while, and start it over using the best guess
we’ve found so far, hoping that the algorithm
will get out of the local “well” it got stuck in.
The following procedure gave us good results
in Minverse: at the beginning of the minimiza-
tion process, we stop it relatively often and
start over from the last guess. As the algo-
rithm progresses and supposedly tries to con-
verge on a correct solution, we restart it less
and less often.

Another refinement of the Minverse algo-
rithm related to restarting the minimization is
recentering. The fact that the center of each
polygon is an ordinary minimization variable
is problematic in the following way: When the
polygon is close to the correct solution, but
the center we chose for it is close to the edge of
the polygon, nothing will improve the choice
of that center. Moving the center (with the
whole polygon) will only make the guess worse.
This is why, in a case where our initial guess
polygon and its center are far from the solu-
tion ones, we often see the center moving “too
slow”, until we get a polygon whose “center”
is on its edge and some of the radii are close
to zero, which is problematic because negative
radii are not allowed.

Our solution is to recenter the polygons
whenever the minimization is restarted, i.e., to
choose a new center for each polygon (e.g., by
averaging the points of the polygon) and then
resample the polygon using the new center.



3 Reconstruction results
using Minverse

In this section we shall see examples of recon-
struction using the Minverse algorithm. In
each example, we shall take a given body (a
layered polygon), find its projections by a cer-
tain set of rays, and than let the Minverse algo-
rithm attempt to reconstruct a body which has
these projections. We shall demonstrate how
Minverse is able to reconstruct several bodies
for which a unique-reconstruction theorem is
not known, including non-convex bodies and
bodies with holes. at

We shall start with an example in which we 1 EE 0 o5 :
expect unique reconstruction: a generalized
circle with exponent 1.6 (z1:% 4+ 46 = 1), and
the two axis directions. Unique reconstruction
is proved by the following theorem, which is a
generalization of a theorem from [2]:
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Figure 1: Reconstruction of the generalized
circle 1'% + 6 = 1 using Minverse

Theorem 1 Let A be a set symmetric relative
to the y axis (i.e., (z,y) € A <= (—z,y) €
A), such that its intersection with each line
perpendicular to the y axis is a section (this
condition is weaker than convexity). Then A is
uniquely determined among all measurable sets
from its projections in the two axis directions

x, y.
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In figure 1 we can see that indeed Minverse U2 of
was able to reconstruct the generalized circle.
Although we saw a theorem saying that
given two directions, most convex bodies can
be uniquely reconstructed from their projec-
tions in these directions, [6] already noted that ‘ ‘ ‘
one of the simplest bodies we can think of, 1 05 0 o5 !
the square, cannot be uniquely reconstructed
from its projections in two directions. For any Figure 2:  Ambiguous reconstruction of a
pair of two directions other than the pair of square using Minverse: Minverse found a dif-
directions of the square’s edges, or the pair ferent shape with the same projections.
of directions of the square’s diagonals, [6] ex-
plains why there is a different parallelogram
givin the same projections. In Nadav Har’El’s
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Figure 3: Reconstruction of the “mushroom”

MSC thesis it is shown why in many choices
of two directions, yet another reconstruction
that hasn’t been mentioned before is possible,
which is star-shaped but not convex. Min-
verse might find any one of these possible re-
constructions, and the actual reconstruction it
will find depends on the initial guess. In fig-
ure 2 we see how a Minverse reconstruction
gave us the aforementioned star-shaped set.

As we said earlier, little is known theoret-
ically about the possibility of unique recon-
struction when the given shape is connected
(and even star-shaped), but not convex, and
Minverse may become an interesting research
tool in this area. We’ve already seen above a
non-convex but star-shaped shape that has the
same projections as a square. In figure 3 we see
the Minverse reconstruction of a non-convex
“mushroom”-like shape from its projections in
two directions. Although we don’t know of
a theorem that guarantees unique reconstruc-
tion in this case, we can see that indeed Min-
verse reconstructed the correct shape.

Our general layered polygons allows Min-
verse to attempt the reconstruction of bodies
with holes. Again, the theory in this area is
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Figure 4: Reconstruction of circle with a cir-
cular hole
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Figure 5: Reconstruction of decagon with a
decagonal hole
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Figure 6: Reconstruction of decagon with two
square holes

largely lacking, making Minverse an interest-
ing research tool. In 4 we see how Minverse
reconstructed a circle with a small off-center
circlular hole. The first guess was a pair of
overlayed circles with radius 1 at the origin. In
this reconstruction we used projections from
three directions, although we got a similar re-
sult by using only two. Another example is
the reconstruction of a regular decagon with
a hole which is also a regular decagon: see 5.
The outer decagon was very accurately recon-
structed, while the accuracy of the decagonal
hole is lower because of its smaller influence on
the evaluation function we are minimazing. 6
shows an example with two holes: in this case
the convergence of the Minverse algorithm was
very slow, and although as we can see it got
quite near the shape we expected, it hasn’t
quite converged yet (and the evaluation func-
tion wasn’t near enough to 0).

At this point, we would like to point out
that we can think of geometric tomography
(the reconstruction of geometric shapes) as a
method of reconstruction holes in bodies of
constant density: suppose that we have an

U1 U2
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Figure 7: Converged reconstruction of a dis-
connected shape

opaque three-dimensional body which has a
known uniform density, except a hole whose
shape we want to reconstruct. Our meth-
ods are planar, so we’ll talk about one planar
slice of the body. We can measure the out-
side boundary of the slice with direct methods
(X-Rays are not needed for that) and subtract
the measured projections from the projections
we’d expect were the body’s extrnal boundary
was uniformly filled with material of the given
density. The result of the subtraction is ex-
actly the projections that we would have got
from an imaginary body which is the hole in
the original body filled with material with the
given density.

With this view in mind, the reconstruction
of a non simply-connected shapes like we did
in the above examples does not seem very use-
ful. It seems more useful to try to reconstruct
non-connected shapes, e.g., two components
representing two holes in a body. For example,
in 7 we reconstructed a non-connected shape
made of an ellipse and a circle. The initial
guess in this reconstruction was two circles of
radius 0.5, one centered at the origin and one
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Figure 8: Unconverged reconstruction of a dis-
connected shape

at (0,1) (such a crude guess can easily be de-
termined from the projections).

4 Discussion

We developed and implemented a reconstruc-
tion tool, Minverse. This tool shows that it is
possible in practice to reconstruct star-shaped
sets (or even more general sets) from their pro-
jections in a small number of directions. These
practical results point out that the chances
of unique reconstruction are much more opti-
mistic than what it seems from known theoret-
ical results. We conjecture that in the future
new theorems will be discovered concerning
unique reconstruction and the stability of the
reconstruction problem, that will prove why
Minverse gives such good results.

Future research on Minverse should include
improving the convergence and speed of the al-
gorithm. The current version, written as a re-
search prototype, was not optimized for speed,
with typical runs taking anywhere from a few
minutes to a few hours on a personal com-
puter. The complexity of the projection simu-
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lation subroutine can be lowered using smarter
algorithms, and the number of function evalu-
ations can be lowered by using a better min-
imization algorithm. We should also devise
better methods of “escaping” local minimums
during the minimization process. For exam-
ple, when we tried to take for the disconnected
shape example an initial guess of two overlayed
circles of radius 0.5 at the origin, the Minverse
minimization algorithm got stuck at a local
minimum, as in Figure 8. This happened be-
cause the two polygons have the same density,
and start at the same position, so it is ”hard”
for them to ”decide” which circle should con-
verge on which connected component.
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