
Beyond Basic Faceted Search

Ori Ben-Yitzhak1 Nadav Golbandi1 Nadav Har’El1 Ronny Lempel2
Andreas Neumann3 Shila Ofek-Koifman1 Dafna Sheinwald1 Eugene Shekita4

Benjamin Sznajder1 Sivan Yogev1

IBM Silicon Valley Lab3 IBM Haifa Research Lab1 Yahoo! Research2∗ IBM Almaden Research Center4
555 Bailey Ave. Haifa 31905, Israel Haifa, Israel 650 Harry Road

San Jose, CA 95141 San Jose, CA 95120
[orib, nadavg, nyh, shila, dafna, benjams, sivany]@il.ibm.com1

rlempel@yahoo-inc.com2 aneuman@us.ibm.com3 shekita@almaden.ibm.com4

ABSTRACT
This paper extends traditional faceted search to support
richer information discovery tasks over more complex data
models. Our first extension adds flexible, dynamic busi-
ness intelligence aggregations to the faceted application, en-
abling users to gain insight into their data that is far richer
than just knowing the quantities of documents belonging to
each facet. We see this capability as a step toward bring-
ing OLAP capabilities, traditionally supported by databases
over relational data, to the domain of free-text queries over
metadata-rich content. Our second extension shows how one
can efficiently extend a faceted search engine to support cor-
related facets - a more complex information model in which
the values associated with a document across multiple facets
are not independent. We show that by reducing the prob-
lem to a recently solved tree-indexing scenario, data with
correlated facets can be efficiently indexed and retrieved.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms

Keywords
Search engines, multifaceted search, business intelligence

1. INTRODUCTION
The Web has long since stopped being just a resource of

information. More and more transactions are happening on-
line, with the decision process driving users to make these

∗Work done while author was at IBM Haifa Research Lab

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’08, February 11–12, 2008, Palo Alto, California, USA.
Copyright 2008 ACM 978-1-59593-927-9/08/0002 ...$5.00.

transactions often involving interaction with complex and
high-dimensional data. Accordingly, information discovery
and e-commerce systems must feature intuitive and easy in-
teraction modes to allow non-experts to explore such data.

Multifaceted search, also known as guided navigation, is
a popular and intuitive interaction paradigm for discovery
and mining applications that allows users to digest, ana-
lyze and navigate through multidimensional data. Faceted
search applications are implemented in many Web sites -
especially e-commerce sites - and are sold by several soft-
ware vendors (e.g. Endeca1, Mercado2 and IBM3). A typi-
cal user’s interaction with a faceted search interface involves
multiple steps in which the user may (1) type or refine a
search query, or (2) navigate through multiple, independent
facet hierarchies that describe the data by drill-down (refine-
ment) or roll-up (generalization) operations. When certain
values across several facets are chosen as the current search
context, faceted applications show possible refinements of
those facets (categories) to sub-categories, typically along
with the number of search results (satisfying both the free-
text query and the current facet constraints) present in each
sub-category. These counts provide guidance to the user by
presenting a quantitative overview on the variety of data
available, thereby hinting at the refinement operations that
seem most promising for zooming in on the target informa-
tion need.

Nevertheless, guided navigation interfaces can be greatly
improved by providing richer insight into the data. The abil-
ity to view flexible and dynamic aggregations over faceted
data - as typically found in business intelligence applica-
tions over structured data - would allow users to make more
informed drill-down and roll-up choices, which in turn will
support them in making better decisions.

Another shortcoming of faceted search is that its basic
data model, where documents are associated with sets of
values across several independent facet hierarchies, is too
restrictive to model some real-life data. For example, docu-
ments that describe products may have non-independent, or
correlated, facet values associated with them. One example
is an article of clothing that comes in both red and blue, and
in both large and small sizes - however, the small instance

1http://endeca.com/
2http://www.mercado.com/
3http://www-306.ibm.com/software/data/discovery/
content/

33

comes only in red whereas the large instance comes in both
colors. Thus, the “color” and “size” facets are correlated
rather than independent.

This paper addresses both of the above shortcomings.
Our first contribution extends faceted search applications
to return not only counts of result documents across sev-
eral facets, but also richer aggregations that support better
decision making. We proceed to compare and contrast the
setting of faceted search over textual data with business in-
telligence applications in the relational setting. Our second
contribution shows how to efficiently index and search docu-
ments with correlated facet values by reducing the problem
to a recently solved instance of indexing shared content in
an ordered tree of documents [5].

While not the focus of this paper, our third contribution is
in detailing some of the engineering aspects involved in sup-
porting faceted search. Although many sophisticated imple-
mentations of faceted search exist, none seems to have been
described in depth in the literature.

The rest of this paper is organized as follows. We survey
related work in Section 2. Section 3 describes our refer-
ence implementation of basic faceted search, on which we
build in the following sections. Section 4 presents our first
contribution - an extension of faceted search with business-
intelligence aggregations. Section 5 presents our second con-
tribution, of enabling faceted search over a more complex
data model in which the values associated with documents
across different facets are correlated rather than indepen-
dent. We conclude in Section 6.

2. RELATED WORK
This section briefly surveys related work in two areas -

multifaceted search and on-line analytical processing (OLAP).
More on the connection between faceted search and OLAP
can be found in Section 4.3.

2.1 Multifaceted Search
The pillars of any faceted collection are (1) the facet hier-

archies and (2) the mapping of the documents onto those hi-
erarchies. In certain metadata-rich semi-structured corpora,
both may come as an integral part of the corpus. However,
in less structured corpora, mapping documents to facet hi-
erarchies (which themselves might need to be constructed)
is challenging. In two related papers, Dakka et al. [8, 7]
describe algorithms for extraction of facet hierarchies from
a corpus based on lexical subsumption, and assignment of
the documents to those facets. Stoica et al. [24] use synsets
and hypernym relations to accomplish a similar task. Fein-
stein and Smadja [11] describe the RawSugar social tagging
system, which supports tag hierarchies. Those hierarchies,
while typically shallow, enable faceted search on the space
of tagged documents. Kohlschütter et al. [15] use personal-
ized PageRank values for multiple ODP4 categories to (1)
infer dominant facets in Web search results, and (2) support
drill-down operations on the result set.

At the other extreme of the flow, opposite data prepara-
tion, lies the faceted user interface. Its purpose is to ease
the presentation of a complex, multidimensional information
space and to enable intuitive discovery-oriented navigation
within the space. Hearst [14] provides observations based
on many years of experiments on interface design, most re-

4http://www.dmoz.org/

cently as part of UC Berkeley’s Flamenco Search Interface
project5. Visualization of multidimensional information is
also the main focus of [3]. There, the described system also
calculates scalar statistics of numeric fields over the docu-
ments returned by search queries. Schneiderman et al. [23]
plot two-dimensional tables with hieraxes - axes of hierarchi-
cal categories. Each cell of the table contains several counts
of documents (corresponding to a few types) using color-
coding, thus essentially supplying a 3D table. Meredith and
Pieper’s inverted index based BETA system [17] also dis-
plays two-dimensional tables for correlating pairs of facets.

Typical faceted search applications aggregate counts for
all documents that match the query. However, both Anick
and Tipirneni [2] and Krellenstein [16] describe implementa-
tions where facets are extracted only from the top-ranking
result documents.

Ross and Janevski [20] argued that relational algebra is
ill-suited to treat faceted hierarchies, and proceeded to de-
fine a query language and algebra for querying hierarchi-
cally classified data. They showed that their query algebra
requires lower time and space complexity than relational al-
gebra, and discussed the differences between the expressive
power of the two algebras.

2.2 On Line Analytical Processing
A robust review of OLAP is beyond the scope of this

paper. The following brings a brief introduction to OLAP
in general and the CUBE operator in particular. For a more
comprehensive view of these topics, please refer to the vast
data warehousing and data mining literature (e.g. [4]).

The term OLAP - On Line Analytical Processing - was
coined by Codd et al. in [6]. The motivation for their
work was the inability of relational databases to efficiently
and intuitively support analysis of multi-dimensional data
at multiple aggregation levels, which are crucial in decision-
support systems. They defined 12 criteria for evaluating the
fit of OLAP products. The authors envisioned OLAP (al-
most exclusively) as analysis of historical data rather than
incremental, up-to-date data.

The cube operator was introduced in [13] for supporting
the computation of aggregates needed in OLAP databases.
It can logically be thought of as an n-dimensional gener-
alization of the group-by operator. In other words, cub-
ing involves computing aggregations that are grouped by
all possible combinations of values for a list of dimensions
or attributes [1]. Often, the number of tuples of the actu-
ally occurring combinations is much less than the cardinality
of the cross-product of the attribute domains, resulting in
sparse cubes [21].

Naturally, query response time is a crucial criterion for
interactive OLAP systems. With the number of records in
many warehouses measured in billions, extensive preprocess-
ing and clever data structures are needed to ensure that ac-
curate results for complex aggregations are returned in a
timely manner. However, one implication of extensive pre-
processing is that such systems struggle to keep up with
dynamic data, when new records arrive and/or are deleted
at high rates. Roussopoulos et al. [22] propose a method
for updating cubes in bulks, as they argue that document-
at-a-time updates or frequent complete recomputations are
impractical. Palpanas et al. [19] present a method for up-

5See the Flamenco site http://flamenco.berkeley.edu/
index.html for references to many additional publications.

34

dating cubes in the presence of non-distributive aggregate
functions, and contain many references to additional works
on updating cubes. Fagin et al. [9, 10] introduced a the-
oretical framework for solving optimization problems in a
data model they called a multi-structural database (MSDB).
Roughly speaking, whereas traditional OLAP queries ask
for certain aggregations to be computed on specified regions
of a cube, Fagin et al. defined problems whose solutions
require the identification of regions in the MSDB that opti-
mize certain objective functions.

3. IMPLEMENTATION OF BASIC FACETED
SEARCH

While faceted search applications have become very pop-
ular over the last few years, we are not aware of papers de-
scribing the indexing and runtime internals of faceted search
engines. Furthermore, the implementation in the Solr6 open
source project deals with “flat” and non-hierarchical facets.
We thus describe our reference implementation, commenting
along the way on requirements we had, tradeoffs we faced,
and design choices we made. As this is not the main focus
of the paper, the discussion is kept at a high level, leaving
out some low-level details.

3.1 Lucene Background
Our implementation is written in Java, on top of Apache

Lucene7, a popular open-source search library. Lucene in-
dexes Documents, each being a collection of Fields. A field
has a name and some associated text.

Lucene maintains a logical inverted index per field. The
index holds for each term (word) a postings list — a list
of document identifiers and word offsets within those doc-
uments in which this term occurs8. Furthermore, for each
occurrence, an arbitrary payload can be stored - a byte ar-
ray that encodes extra information and that is accessible at
runtime. Each triplet of 〈docID, offset, payload〉 is called
a postings element. During search, Lucene uses these post-
ing lists to quickly iterate over all documents matching the
search criterion (hits) and to evaluate the relevance of each
hit to the query. Finally, the most relevant documents are
returned.

Faceted search enablement requires some additional pro-
cessing for each matching document - namely, adding its
contribution to its associated facets. Lucene makes it easy
to plug such functionality into its iteration over the hits,
since it can call a hit collector of our choice for each match-
ing document it encounters.

3.2 Data Model and Document Ingestion
The basic requirement when ingesting documents in a

faceted corpus is the ability to associate facets with each
document in the collection, and to have a coherent view of
the taxonomy - the hierarchical relationships among those
facets. The taxonomy is generally a DAG (directed acyclic
graph) whose nodes represent facets and whose directed
edges denote the refinement relations between them.

There are two approaches to ingesting documents in faceted
collections: the search engine can either be given the full
taxonomy before indexing, or learn it, while indexing, from

6http://incubator.apache.org/solr/
7http://lucene.apache.org/java/
8Offsets are needed for phrase matching, for example.

the ingested documents. In the first approach, documents
must specify the taxonomy nodes with which they are as-
sociated, while in the second approach documents specify
the taxonomy paths to which they correspond. With either
approach, the application that owns and indexes the data
must add taxonomy nodes or facet paths to each document
prior to adding it to the index. Note that there are many
works that describe the mapping of documents into facet
hierarchies, e.g. [8, 24, 7] - however, this aspect of preparing
the information to be indexed is upstream of the indexing
process we describe and is beyond the scope of this paper.

Our implementation uses the second ingestion approach.
We implicitly infer the facet hierarchy from the plurality of
paths encountered when indexing the individual documents.
We essentially collect all encountered facet-paths to a forest-
like graph, where each tree corresponds to a dimension, or
top-level facet. This approach allows for easy and natu-
ral evolution of the facet hierarchies - as new documents
are ingested, new facet paths may be seamlessly introduced
without the need for any administrative action. Rather, our
inferred taxonomy will automatically expand to accommo-
date the new data.

Technically, applications associate facet paths with docu-
ments by adding to each Lucene Document object, prior to
indexing it, a specially-named field F . We will denote by Fd

the field F associated with document d. Assume now that a
document d is added to the index, with field Fd containing
the set of k facet paths P1, P2, . . . , Pk associated with doc-
ument d. Our processing of field F performs the following
operations for each path Pi = vi

1/vi
2/ . . . /vi

`i
of length `i:

1. Creates postings elements for document d for each pre-
fix of Pi. This is equivalent to adding the following `i

tokens (terms) to document d:

vi
1 , vi

1/vi
2 , vi

1/vi
2/vi

3 , . . . , vi
1/vi

2/ . . . /vi
`i

.

This, in turn, will cause document d to appear in
the postings lists associated with these path prefixes.
These postings lists are used when evaluating queries
that are restricted to certain facet (path prefix) values.

2. Adds each path to a taxonomy index - a structure that
maintains an internal representation of the taxonomy
as perceived from the documents ingested so far, and
in particular (1) assigns an ordinal number n to each
distinct path prefix, and (2) maintains a function f
from the ordinal of each path to that of its father path9.

3. Encodes the k paths associated with the document
and stores the encoding as the payload of a special
FacetInfo term associated with d. Specifically, each
path P is encoded by the integer n(P), i.e. by the or-
dinal number of the path. The integers corresponding
to the k paths of document d are then written in the
payload of d’s FacetInfo term.

At the end of this process for all documents, we have:

• Postings lists for each path prefix P , listing all docu-
ments that are associated with some path Q such that
P is a prefix of Q.

• A taxonomy index that contains the facet hierarchy
seen so far and that maintains the function f .

9The father path of v1/v2/ . . . /v`−1/v` is v1/v2/ . . . /v`−1.

35

• A special postings list for the term FacetInfo that con-
tains, for each document d, a posting element whose
payload contains a list of integers corresponding to the
facet paths associated with d.

Note that since all our operations are performed on path
prefixes rather than on individual node labels, the resulting
taxonomy is a forest of trees rather than a general DAG.
Figure 1 exemplifies the output of the indexing process af-
ter ingesting two documents doc1 and doc2, each associated
with the facet paths shown in Table 1. It shows the facet
forest maintained by the taxonomy index, the ordinal num-
ber n of each path, the function f mapping paths to father
paths, the inverted index and the payloads of the FacetInfo
postings list.

3.3 Runtime
Before describing our implementation of query evaluation

in a multifaceted setting, we first describe the input and
output - the notions of faceted query and faceted result set.

The faceted query is a query string coupled with a set of
subtrees in the taxonomy, for which facet counting is re-
quired. The faceted result set for this query is a ranked
list of documents matching the query, along with a set of
counters for all the nodes in the facet subtrees specified by
the query. Formally, we define a faceted query as a tuple
FQ = (qc, TF) as follows:

1. A free-text query qc, containing constraints that define
the set of documents to be returned in ranked order
by the search engine. This portion may (and usually
does) contain category/facet constraints that limit the
documents to those residing in certain subtrees of the
facet hierarchy.

2. A set of target facets TF = {tf1, tf2, . . . , tfk}, where
each target facet tfi = (Pi, ni) is composed of a target
path P and a depth level n ≥ 1.

The expected output, a faceted result set is also a tuple
FRS = (Dqc, {FS1, . . . , FSk}) where Dqc is a ranked list of
documents satisfying the constraints qc, and where FSi is
the facet set corresponding to tfi. In particular,

FSi = {(Qi
1, c

i
1), (Q

i
2, c

i
2), . . . , (Q

i
mi

, ci
mi

)}

where:

• Each taxonomy path Qi
j satisfies the following:

Pi is a prefix of Qi
j and |Pi| + ni ≥ |Qi

j |

In other words, the taxonomy node reached by the
path Qi

j is in the subtree of depth ni rooted at the
taxonomy node reached by the path Pi.

• ci
j is the count of the number of documents in Dqc that

are associated with the path Qi
j . With a slight abuse

of notation, ci
j = |Dqc ∩ Qi

j |.

Table 1: Facet paths associated with doc1 and doc2
doc1 facets doc2 facets
clothing/children’s/coats clothing/women’s/accessories
clothing/winter/coats clothing/all seasons
price/30-40/30-35 price/30-40/36-40
color/blue color/red

Figure 1: Indexing process byproducts

Note that often, only the paths associated with the highest
counts in each facet set are actually returned and displayed
to the user. This is similar to returning only the most rele-
vant documents in Dqc.

Given a faceted query (qc, TF), the standard Lucene query
engine will determine (and rank) the set of documents Dqc

corresponding to qc. For each document d ∈ Dqc, Lucene
then calls our modified hits collector which matches the tar-
get facets specified in TF against the facets associated with
d as contained in the payload of the FacetInfo postings list.
Since the payload contains the ordinal numbers correspond-
ing to the full facet paths associated with d, we use the
Taxonomy Index’ f -function to determine the ordinal num-
ber of each path prefix, and then check which of d’s facet
path prefixes fall within the scope of any target facet. We
create and increment counters for each such qualifying path,
taking into account also the depth constraints. The set of
qualifying paths that are encountered per each target facet
tfi constitutes the corresponding Facet Set FSi that will be
part of the faceted result set.

36

An alternative approach to facet counting is to (1) use the
Taxonomy Index to enumerate the set of facet paths that fall
within the scope of each target facet, and (2) intersect the
postings list corresponding to each such path with Dqc. We
preferred our design of consulting the single (large) FacetInfo
postings list that encodes all facet information pertaining to
all documents since it is more suited for broad facet queries,
in which the target facets define large subtrees. Note that
the alternative must consult a separate postings list for each
taxonomy node within the subtrees defined by the target
facets, implying more random I/O. A full comparison of the
two approaches is beyond the scope of this paper.

4. EXTENDING MULTIFACETED SEARCH
TO BUSINESS INTELLIGENCE

Business Intelligence is defined in Wikipedia10 as “...a
broad category of applications and technologies for gather-
ing, providing access to, and analyzing data for the purpose
of helping enterprise users make better business decisions.”

As discussed in the Introduction, traditional faceted search
applications provide an attractive interface for exploring
multidimensional data. In particular, such applications pro-
vide the number of documents found in all (or some) refine-
ments of a set of target facets, and the combination of the
refinements and counts may guide the user toward satisfy-
ing the information need. However, guiding a search session
based on document counts alone is simplistic. In many sce-
narios, other hints rising from the data - and in particular,
other views into the data per sub-category of each target
facet - would provide users with much better hints for refin-
ing their searches. In other words, qualitative information
may ease search and discovery tasks more than quantitative
information. For example, when shopping for books and
looking to refine the search by author, it might make more
sense to drill down to the author who wrote the most best-
sellers or who sold the most overall copies, instead of focus-
ing on the author who wrote the most (perhaps mediocre)
books. Likewise, when analyzing a corpus of contract docu-
ments and trying to comprehend the strength of the business
across European countries, it might make more sense to drill
down to the country that has the largest average contract
value, instead of drilling down to the country in which more
contracts exist, but are perhaps of lower value.

One such source of qualitative information are aggrega-
tions (per sub category) of arithmetic and Boolean functions
over numeric meta-data attributes that are associated with
the documents. Figure 2 shows an example of such aggre-
gations when searching for “world wide web” over a subset
of Amazon’s book catalog11 , as crawled and indexed by us.
For example, instead of displaying the authors that wrote
the most query-matching books, we populated the “Author”
facet with the authors that wrote the most best selling books
on the topic. We also display the average price of each au-
thor’s books. The “Rating” facet is sorted by the score of
the most relevant book (as determined by Lucene’s ranking
function) for each rating level; this allows us to examine the
correlation between relevance scores and the public’s rating
of the books. The “Binding” facet is sorted by the tradi-
tional document counts; however, we display the average
weight per page for the books of each binding, discovering

10
http://en.wikipedia.org/wiki/Business_Intelligence

11http://aws.amazon.com

and confirming the (rather intuitive) fact that paperbacks
are generally lighter than hardcover books.

4.1 Implementation Details
We extend the multifaceted search model presented in Sec-

tion 3 by allowing a faceted query to specify any number of
aggregation expressions that are to be calculated per tar-
get facet, returning the values of these aggregations for each
path of the corresponding facet set in the result set. For-
mally, a target facet becomes now a triplet tfi = (Pi, ni, Ei)
where Ei = {ei

1, e
i
2, . . . , e

i
xi
} is a set of xi expressions. The

facet set corresponding to tfi becomes

FSi = {(Qi
1, c

i
1, AV i

1), (Qi
2, c

i
2, AV i

2), . . . , (Qi
mi

, ci
mi

, AV i
mi

)}

where for all j = 1, . . . , mi, AV i
j is an ordered set of xi

aggregated values, and for all k = 1, . . . , xi, AV i
j [k] is the

aggregated value of expression ei
k, as calculated over all the

documents in Dqc ∩ Qi
j . Essentially, each path within the

scope of target facet tfi now maintains xi expression accu-
mulators in addition to the counter.

The expressions we support involve arithmetic, relational
and Boolean operators over numeric constants and numeric
attributes and fields associated with each document (e.g.
price, weight etc. in the Amazon book catalog). As in the
C/C++ programming languages, each Boolean expression
resolves to 1 if the predicate is true and to 0 if it is false.
The set of expression values for each matching document
are aggregated by one of four functions - min, max, aver-
age and sum, which are all algebraic as defined in [13] and
require O(1) memory at each accumulator (and O(1) up-
date time as well). These four aggregation functions, along
with the count aggregation, are exactly the five functions
for aggregating table values defined by the SQL standard
from 1992 12. We currently do not support holistic aggrega-
tors [13] (e.g. median) that would require us to store Ω(1)
values in memory.

Furthermore, we consider Lucene’s relevance score for doc-
ument d as a dynamic (query dependent) pseudo numeric
field of d, and allow it to take part in the expressions. Thus,
expressions may calculate the average relevance of docu-
ments in a certain facet path to the query, or the num-
ber of documents per path whose relevance is above a cer-
tain threshold. Some example expressions, and in particular
those used in Figure 2, are shown in Table 2.

Since a single query may involve several target facets, each
with their own list of expressions, and thus may require ac-
cess to numerous numeric fields, we decided to mirror the
design choice we made for the set of facet paths associated
with each document and added all numeric fields associated
with a document to the payload of its FacetInfo token. Thus,
the FacetInfo entry corresponding to document d now con-
tains two parts - the list of facet paths associated with d as
described in Section 3, and a list of name-value pairs for all
numeric fields and attributes associated with d. Each name-
value pair is encoded in 12 bytes - 4 bytes encode the 32-bit
hash value of the numeric field’s name, and 8 bytes encode
the field’s value (in double precision).

During query evaluation, when our hits collector is called
per document d with its FacetInfo payload, we identify the
facet paths associated with d that are contained within any

12IS 9075 International Standard for Database Language
SQL 1992

37

Figure 2: Faceted search with Business Intelligence aggregations

Table 2: Examples of supported business intelligence aggregation expressions

Count sum{1} Count the number of matching documents
Best sellers sum{salesrank< 5000} Count the number of results among the 5000 top-selling books in Amazon
Average price avg{price} Calculate the average price of the matching books
Max relevance max{relevance} Return the highest relevance score assigned by Lucene to a matching book
Grams per page avg{grams/pages} Calculate the average weight (in grams) per book page

taxonomy subtree defined by a target facet. For each such
pair of path P and containing target facet tf , we compute
the values of the expressions associated with tf using d’s
numeric fields, and aggregate the values in the set of accu-
mulators (one per expression) associated with path P .

Note that aggregations similar in spirit to those described
above are performed in FAST Data Search [3]. There, how-
ever, a single set of aggregations are computed for the entire
result set and not per each refinement of each facet. Thus,
while summary information is made available to the user,
hints for guiding the navigation process further are not.

4.2 Dynamic Facets
Typical faceted search applications operate over a set of

(predetermined) indexed facets, i.e. the facets and attributes
associated with each document must be known at indexing
time. One such attribute might be the date of a document,
which then trivially supports facets such as years, months
and days. However, applications that want to present in-

formation such as “documents dated in the last day/week”
as facets require more complex machinery, as the mapping
of documents to these facets is not known at indexing time
and can only be determined at the time when the query is
submitted. We refer to such facets as dynamic facets.

The ability to sum Boolean expressions as described above
allows an application to easily support dynamic time-based
facets as follows: assume each document’s date (denoted by
doc.time) is indexed as a numeric field encoding the number
of seconds since January 1, 1970. Also assume that the
submission time of the query, denoted by qtime, is given in
the same units. Then, the following expression will count
the number of matching documents that are dated within
the last week, as the Boolean condition will evaluate to 1
only for those recent documents:

Sum {qtime-doc.time ≤ 60 ∗ 60 ∗ 24 ∗ 7}

In a similar fashion, one can support the categorization of
search results into spatial dynamic facets, e.g. count the

38

number of results in certain radii around a location that is
specified by the query. This requires the indexing of lat/long
coordinates per document, and might present an easier op-
tion than integrating the search application with a separate
GIS system.

4.3 Contrasting our approach with OLAP
Supporting dynamic aggregation expressions in faceted

search applications naturally enhances the analyzability of
the indexed multi-dimensional data, and provides richer in-
sight into the data than is provided by document counts
alone. In particular, our implementation provides the abil-
ity to view the distribution of expression values across the
possible refinements of a facet, which may sometimes be the
information task itself. In this sense, the functionality we
provide is a form of hierarchical OLAP (see Section 2.2) over
free-text queries on semi-structured data, with the aggre-
gation expressions corresponding to OLAP calculated mea-
sures. Furthermore, OLAP cubes can be thought of as pro-
viding aggregations on Cartesian products of facets.

From the description of our implementation in Section 4.1
it is clear that the complexity of computing k aggregation
expressions for a query whose result set is of size n is O(nk),
as each expression requires O(1) work per matching docu-
ment. Thus, high-recall queries would run slower than low-
recall queries. OLAP cubes, on the other hand, typically
require a constant time per operation, thus computing k
measures per query would typically require O(k) time re-
gardless of the query’s recall. This brings up the question of
whether our approach is valid, or are we using the wrong tool
- an enhanced free-text search library - to solve a problem
that seems to be efficiently addressed with data warehous-
ing technology [4]. In the following paragraphs, we discuss
several features of our implementation that are not easily
realized with traditional cubes.

First and foremost, we support aggregations on results
of free-text search queries. There is practically an infinite
space of such queries - even single term queries define way
too many values for any cube to consider.

Second, our approach supports dynamic corpora, relying
on the incremental indexing capabilities of the underlying
search engine. Lucene, like most engines, supports instanta-
neous document deletions, and has some small latency when
indexing new documents (several minutes may pass until
new documents become searchable). The Taxonomy Index
is incremental as well, and dynamically grows the facet hier-
archy as new facet paths are discovered in new documents.
In contrast, updating OLAP cubes is expensive. For exam-
ple, precomputed aggregate functions such as min and max
are difficult to maintain when data is deleted [19]. In a sense,
dynamic corpora represent a similar challenge to cubes that
free-text queries do - the set of records on which to compute
the cube cannot be determined prior to receiving a specific
query at a specific point in time.

Third, we support dynamic expressions that need not be
predetermined at indexing time. Only the numeric fields
over which the expressions are formulated must be indexed.
The expressions themselves, and their association with the
target facets, are entirely dynamic. In contrast, the mea-
sures computed in OLAP cubes per dimension must be known
in advance, at cube computation time.

Fourth, faceted applications naturally allow for a docu-
ment to be associated with multiple subcategories of the

same top-level facet, i.e. documents may have multiple val-
ues in the same dimension. For example, a film might belong
to both genres “romance” and “comedy”. OLAP does not
easily support such multi-value flexibility.

Fifth, by combining the search engine’s relevance score
into the calculated expressions, we can present the refine-
ments of each facet in relevance order, as well as show only
the most relevant subset of those options. This is particu-
larly useful when the number of possible refinements is larger
than what can be easily visualized by users, i.e. when the
fan-out of a node in the hierarchy of facets is large. No
similar notion of relevance exists in traditional OLAP.

Ultimately, we predict that future BI applications requir-
ing the support of free-text queries will involve hybrid strate-
gies, where the nature of both the application and each spe-
cific query will determine the mix of cubing operations and
runtime computations that is most suitable. For example,
in a case where an initial free-text query is performed, and
then many drill-down/roll-up operations are done on its re-
sult set, one might compute an ad-hoc cube for that result
set and use that cube for the subsequent operations. This
was proposed (in a different context) in [18], where cubes are
built on-demand, over small subsets of data that are defined
by users’ MDX13 queries. On the other hand, when for most
result sets, the number of expected navigation operations is
relatively small, or the measures are dynamic and change
often, or the data is highly incremental - cubing may not
be economical since each cube can only be reused a small
number of times.

5. CORRELATED FACETS
A key characteristic of the standard faceted search data

model is that each document has a certain set of facet val-
ues, e.g. a product (represented by a document) will have
a certain color, size, and price. It could be the case that a
product comes in a variety of colors (e.g. both in red and
in blue) and sizes (e.g. small, medium and large). How-
ever, the standard model then implies that the product is
essentially available in all combinations of these colors and
sizes, i.e. in the cross-product {color/red, color/blue} ×
{size/small, size/medium, size/large}. One can view the at-
tributes of the document as being independent across the
facets in the sense that any value of one facet can co-exist
with any value of another facet.

In many e-commerce situations, the above independence
of facets does not model the data correctly. Returning to
our example of colors, sizes and prices, it may be the case
that a product only comes in red for the small size, only in
blue for the large size, and in both colors for the medium
size. Also, it could be that the large size is more expensive
than the small and medium sizes. To complicate things fur-
ther, it could be that the price of the product also depends
on the particular store where the product is sold (e.g. buy-
ing a certain instance of the product in New York may be
cheaper than buying the same product in San Jose). With
this behavior, if a document has sets of values V1, V2, V3

across three facets, only certain tuples of the cross product
V1 ×V2 ×V3 will co-exist, implying that the product should
only be returned (and counted) for queries that select those
correlated tuples of values across the multiple facets.

13http://msdn2.microsoft.com/en-us/library/
ms145514.aspx

39

Table 3: Correlated Facets e-Commerce Example

Product Instance Manufacturer Type Model Color Size Store Price
1 1 Arthur’s Sports Running Shorts Excalibur red, blue small New York $20
1 2 Arthur’s Sports Running Shorts Excalibur red, blue small San Jose $15
1 3 Arthur’s Sports Running Shorts Excalibur red, black medium New York $20
1 4 Arthur’s Sports Running Shorts Excalibur red, black medium San Jose $15
1 5 Arthur’s Sports Running Shorts Excalibur red, green large New York $22
1 6 Arthur’s Sports Running Shorts Excalibur red, green large San Jose $20
2 1 Arthur’s Sports Running Shorts Lancelot red, blue small, medium New York $17
2 2 Arthur’s Sports Running Shorts Lancelot black, green large San Jose $17
3 1 Arthur’s Sports Running Shorts Galahad blue small San Jose $10
3 2 Arthur’s Sports Running Shorts Galahad black, white medium, large San Jose $12

Table 4: Facet counts for the query “running shorts”

Color Size Price Location
red(2) Small(3) Below $15 (1) San Jose (3)
blue(3) Medium(3) $15-$20 (2) New York (2)
black(3) Large(3) Over $20 (1)
green(2)
white(1)

Table 3 contains an example of three products (fictitious
running shorts), which can be found in various sizes, colors
and prices in two different stores. As Table 3 shows, differ-
ent products in the same corpus might behave differently in
terms of what instantiations they may have. For example,
while the Excalibur model has different sets of colors per size
and different prices in each store, the Lancelot product has
a fixed price - but different sizes are sold in different stores.
The Galahad model is sold in a single store, with the small
articles costing less than the medium and large ones.

E-commerce sites with a faceted search interface typically
display and count results at the product level. Hence, for
the data above, the query “running shorts” should return
three results corresponding to the three models, with the
histogram of colors, sizes, prices and locations as shown in
Table 4. For example, all three models have at least one in-
stance that is sold in San Jose, while only two of the models
(Excalibur and Lancelot) can be found in New York.

Once drilling down into “Size:large” items, there are still
three returned results (each model comes also in large) but
the counts across the other facets change as indicated in
Table 5. For example, although there are two instances of
red large shorts, both are of the Excalibur model and so
the count for “red” at the product level is 1. We see that
although the size of the result set doesn’t change in terms of
documents (products), it does change in terms of the facet
counts. Proceeding with the example, drilling further down
into “Color:black” will yield only two matching products
(large Excalibur shorts do not ship in black), with the counts
for price and store location as shown in Table 6.

The straightforward way to model data with correlated
facets as in Table 3 is by creating one document per row,
indexing the facet values across all columns. In the example
above, that would mean indexing 10 documents, each with
a product number and values across the 7 facets “Manu-
facturer”, “Type”, “Model”, “Color”, “Size”, “Store” and
“Price”. Such documents respect the independence of facet
values, namely if a document has facet values V1, V2, . . . , Vk,

Table 5: Counts across facets for the query “running

shorts Size:large”

Color Price Location
red(1) Below $15 (1) San Jose (3)

black(2) $15-$20 (2) New York (1)
green(2) Over $20 (1)
white(1)

Table 6: Counts across facets for the query “running

shorts Size:large Color:black”

Price Location
Below $15 (1) San Jose (2)
$15-$20 (1)

all tuples of the cross product V1 ×V2 × . . .×Vk are valid14.
However, this representation suffers from two shortcomings:

1. Large index size - attributes that are common to many
product instances will need to be repeatedly indexed
for each instance. Note that in general, each product
will also have some marketing text associated with it,
and enabling free-text search on such text requires it
to be reindexed for each instance of the product.

2. Difficulty in aggregating counts at the product level.
Returning to the example above, the three products
are representable by 10 documents (product instances).
The query “color:red” is satisfied by 7 of those in-
stances - 6 stemming from the Excalibur model and
one stemming from the Lancelot model. Some “group
by” mechanism is needed to ensure that facet values
found in multiple instances of a single product are tal-
lied up correctly, i.e. counted only once.

These two issues can be resolved by adopting a tree view
of the data - we model each product as a tree, in which
the leaves represent specific instantiations, and where the
attributes corresponding to each leaf are the union of at-
tributes on the unique path from the root of the tree to
the leaf. In other words, each node of the tree shares its
attributes (text and associated metadata) with all its de-
scendants. When we factor out common attributes of leaf
nodes to intermediate nodes, this representation avoids sig-
nificant duplication of text and metadata that are common

14Note that this representation resembles an OLAP fact ta-
ble, with the difference being that we allow columns to hold
multiple values (e.g. two colors or sizes) per row.

40

Manufacturer:Arthur’s Sports
Type:Running Shorts

Model:Excalibur
Color:red

Color:black
Size:medium

Color:blue
Size:small

Color:green
Size:large

Store:NY
Price:$20

Store:SJ
Price:$15

Store:NY
Price:$20

Store:SJ
Price:$15

Store:NY
Price:$22

Store:SJ
Price:$20

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6

Instance Tree of Product 1

Manufacturer:Arthur’s Sports
Type:Running Shorts

Model:Lancelot
Price:$17

Color: red, blue
Size: small, medium

Store:NY

Instance Tree of Product 2

Color: black, green
Size:large
Store:SJ

Instance 1 Instance 2

Manufacturer:Arthur’s Sports
Type:Running Shorts

Model:Galahad
Store:SJ

Color:blue
Size:small
Price:$10

Instance Tree of Product 3

Color: black, white
Size: medium, large

Price:$12

Instance 1 Instance 2

Figure 3: Tree representation of the three products and 10 instances

to many variations of each product. An example of the tree
representation of the data in Table 3 is given in Figure 3.

A method for efficiently indexing such document trees us-
ing inverted indices was recently presented in [5]. Given a
tree, the method indexes each node as a document in the
inverted index. The nodes are indexed such that all content
that is associated with a node is logically shared with all
its descendants in the tree, e.g. tokens that are associated
with the root of a tree are indexed once but are attributed
to all the nodes of the tree. Using this method, the three
trees in Figure 3 are indexed using 16 ”virtual” documents,
with the 10 documents in the tree leaves representing actual
product instances. The text and set of attributes logically
associated with each product instance are the union of the
leaf’s text and attributes with the text and attributes of all
of its ancestors. In the running example of Table 3 and Fig-
ure 3, the number of indexed facet values is reduced from 81
in the straight-forward approach (the number of values in
columns “Manufacturer” through “Price” of Table 3) to 47
in the tree approach as seen in Figure 3. When each product
also contains some general textual description (e.g. market-
ing content that pertains to all instances), modeling each
product as a tree yields even more dramatic space savings
since that text is indexed only for the root of the tree rather
than being reindexed for each instance of the product.

In addition to greatly reducing the space required to in-
dex the various instantiations of a set of products as com-
pared with the straightforward approach, the search algo-
rithm of [5] ensures that result leaves corresponding to the
same tree will be enumerated contiguously. This enables,
with relative ease, to correctly count facets at the product
(tree) level without performing “group by” or other post-
processing, as the search algorithm natively groups its result
documents by tree.

We note that there are many possible tree representations
for a set of documents, depending on the order by which
facet values are factored out along the various paths from

the root to the leaves. The study of the associated optimiza-
tion problem that receives as input a set of documents with
associated facet values and computes their most compact
tree representation is beyond the scope of this paper.

6. CONCLUSIONS AND FUTURE WORK
This paper extended traditional faceted search to support

richer information discovery tasks over more complex data
models. We started out by describing a reference imple-
mentation of a middleware for faceted search, built upon
a standard search library (Apache Lucene). Although not
the focus of the paper, this constitutes our first contribu-
tion since while faceted search has been around for several
years, the literature is lacking descriptions of the engineering
details required to efficiently support it.

We then described two extensions to the basic faceted
search paradigm. Our first extension adds flexible, dynamic
business intelligence aggregations to the faceted application,
enabling users to gain insight into their data that is far
richer than just knowing the quantities of documents belong-
ing to each facet. We see this capability as a step toward
bringing some OLAP capabilities, traditionally supported
by databases over structured data, to the world of free-text
queries over semi-structured or metadata-rich data. Our sec-
ond extension shows how one can efficiently extend a faceted
search engine to support correlated facets - a more complex
information model in which, for a document associated with
value sets V1, V2, . . . , Vk across k facets, only a subset of the
tuples in V1 × V2 × . . . × Vk actually co-exist. After pre-
senting the difficulty and inefficiency of handling correlated
facets within the standard framework of faceted search, we
reduced this problem to a tree-indexing scenario, which was
recently shown to be efficiently indexable and searchable.

The following directions are left for future work. First,
one basic and attractive feature of OLAP cubes is the abil-
ity to perform aggregations for cross products of dimensions.
Current faceted search applications still show refinements of

41

single facets, i.e. return several count arrays that each de-
tail the distribution of documents across the possible refine-
ments of one dimension. Essentially, today’s faceted search
applications return a set of “one-dimensional cubes”. The
next step is to extend faceted search engines to return counts
and general aggregations over any cross product of facets,
i.e. a set of multi-dimensional cubes, built from documents
satisfying a combination of free-text and hierarchical con-
straints. This would greatly advance the reach of business
intelligence applications over semi-structured data. In this
context, note that [17, 23] already return two-dimensional
count tables over searched documents.

Second, we discussed in Section 4 how we can aggregate
general and dynamic arithmetic expressions per facet. A
next related step is adding the ability to restrict and sort
search results by the value of such expressions. While re-
stricting results and sorting them based on numeric fields
of documents is already supported by many search engines
[12], we are not aware of engines that retrieve or sort results
based on arithmetic expressions involving multiple fields.

Third, we intend to study additional complex data mod-
els that exist in e-commerce, such as those where shoppers
may search for a product that cannot be purchased alone
but rather only in combination with other products (e.g.
a certain tie may be available only in combination with a
suit). The many-to-many mapping between individual prod-
ucts and the merchandising combinations that contain them
presents many algorithmic challenges and time-space trade-
offs to inverted-index based search engines.

Fourth, we intend to study efficient means for incremen-
tally updating facet values and numeric attributes of docu-
ments. Typically, updating a document in an inverted index
involves deleting its former version and reindexing it in its
current form. However, metadata such as facet values and
numeric attributes might be amenable to indexing and stor-
age models that can be efficiently updated “in situ”.

Finally, many interesting research questions arise when
considering faceted search across a distributed index. For
example, at indexing time, we can either maintain a unified
and global view of the taxonomy implied by the documents
indexed across all nodes, or have each node maintain a local
view of the taxonomy and reconcile those views at query
evaluation time. Another issue is adapting distributed query
evaluation schemes to not only identify the top-k documents
matching a query, but to also efficiently compute and return
the facet paths of highest count for each target facet, where
counts of paths are accumulated across all nodes.

7. ACKNOWLEDGEMENTS
We thank fellow IBMers John Bosma, Andrew Chasin,

Cliff Leung, Michael McCandeles, John McPherson and Mike
Moran for many useful discussions over the course of this
work. We also thank former IBMers Andrei Broder, Nadav
Eiron, Marcus Fontoura and Runping Qi for early discus-
sions on this topic.

8. REFERENCES
[1] Sameet Agarwal, Rakesh Agrawal, Prasad M.

Deshpande, Ashish Gupta, Jeffrey F. Naughton,
Raghu Ramakrishnan, and Sunita Sarawagi. On the
computation of multidimensional aggregates. In Proc.
22nd Int. Conf. Very Large Databases, VLDB, pages
506–521, 1996.

[2] Peter Anick and Suresh Tipirneni. Method and
apparatus for automatic construction of faceted
terminological feedback for document retrieval, 2003.
US Patent 6519586.

[3] Will Archer Arentz and Aleksander Øhrn.
Multidimensional visualization and navigation in
search results. In Proc. 8th International Conference
on Knowledge Based Intelligent Information and
Engineering Systems (KES’2004), pages 620–627,
September 2004.

[4] Ramon Barquin and Herb Edelstein (editors).
Building, Using and Managing the Data Warehouse.
Prentice-Hall, Inc, 1997.

[5] Andrei Z. Broder, Nadav Eiron, Marcus Fontoura,
Michael Herscovici, Ronny Lempel, John McPherson,
Runping Qi, and Eugene J. Shekita. Indexing of
shared content in information retrieval systems. In
Proc. 10th International Conference on Extending
Database Technology (EDBT 2006), pages 313–330,
March 2006.

[6] E.F. Codd, S.B. Codd, and C.T. Salley. Providing
olap (on-line analytical processing) to user-analysts:
An IT mandate. Technical Report Technical Report,
E.F. Codd & Associates, 1993.

[7] Wisam Dakka, Rishabh Dayal, and Panagiotis G.
Ipeirotis. Automatic discovery of useful facet terms. In
Andrei Z. Broder and Yoelle S. Maarek, editors, Proc.
SIGIR 2006 Workshop on Faceted Search, pages
18–22, August 2006.

[8] Wisam Dakka, Panagiotis G. Ipeirotis, and
Kenneth R. Wood. Automatic construction of
multifaceted browsing interfaces. In Proc. 14th ACM
Int. Conf. on Information and knowledge management
(CIKM’2005), pages 768–775, November 2005.

[9] Ron Fagin, R. Guha, Ravi Kumar, Jasmin Novak,
D. Sivakumar, and Andrew Tomkins. Multi-structural
databases. In Proc. 24th ACM Symposium on
Principles of Database Systems (PODS’2005), pages
184–195, June 2005.

[10] Ron Fagin, Ph. Kolaitis, Ravi Kumar, Jasmin Novak,
D. Sivakumar, and Andrew Tomkins. Efficient
implementation of large-scale multi-structural
databases. In Proc. 31th Int. Conf. Very Large
Databases, VLDB’2005, pages 958–969, August 2005.

[11] Daniel Feinstein and Frank Smadja. Hierarchical tags
and faceted search. the rawsugar approach. In
Andrei Z. Broder and Yoelle S. Maarek, editors, Proc.
SIGIR 2006 Workshop on Faceted Search, pages
23–25, August 2006.

[12] Marcus Fontoura, Ronny Lempel, Runping Qi, and
Jason Zien. Inverted index support for numeric search.
Internet Mathematics, 3(2):153–185, May 2007.

[13] Jim Gray, Adam Bosworth, Andrew Layman, and
Hamid Pirahesh. Data cube: A relational operator
generalizing group-by, cross-tab and sub-totals. In
Proc. 12th International Conference on Data
Engineering, pages 152–159, 1996.

[14] Marti A. Hearst. Design recommendations for
hierarchical faceted search interfaces. In Andrei Z.
Broder and Yoelle S. Maarek, editors, Proc. SIGIR
2006 Workshop on Faceted Search, pages 26–30,
August 2006.

42

[15] Christian Kohlschütter, Paul-Alexandru Chirita, and
Wolfgang Nejdl. Using link analysis to identify aspects
in faceted web search. In Andrei Z. Broder and
Yoelle S. Maarek, editors, SIGIR’2006 Workshop on
Faceted Search, pages 55–59, August 2006.

[16] Marc F. Krellenstein. Method and apparatus for
searching a database of records, 1999. US Patent
5924090.

[17] Daniel N. Meredith and Jan H. Pieper. Beta: Better
extraction through aggregation. In Andrei Z. Broder
and Yoelle S. Maarek, editors, SIGIR’2006 Workshop
on Faceted Search, pages 8–12, August 2006.

[18] Tapio Niemi, Marko Niinimaki, Jyrki Nummenmaa,
and Peter Thanisch. Constructing an olap cube from
distributed xml data. In Proc. 5th Int. Workshop on
Data Warehousing and OLAP (DOLAP), pages
22–27, 2002.

[19] Themistoklis Palpanas, Richard Sidle, Roberta
Cochrane, and Hamid Pirahesh. Incremental
maintenance for non-distributive aggregate functions.
In Proc. 28th Int. Conf. Very Large Databases, VLDB,
pages 177–188, 2002.

[20] Kenneth A. Ross and Angel Janevski. Querying
faceted databases. In Proc. 2004 Semantic Web and
Databases Workshop (SWDB’2004), pages 199–218,
August 2004.

[21] Kenneth A. Ross and Divesh Srivastrava. Fast
computation of sparse datacubes. In Proc. 23nd Int.
Conf. Very Large Databases (VLDB), pages 116–125,
1997.

[22] Nick Roussopoulos, Yannis Kotidis, and Mema
Roussopoulos. Cubetree: organization of and bulk
incremental updates on the data cube. In Proc. 1997
ACM SIGMOD Int. Conf. on Management of Data,
pages 89–99, 1997.

[23] Ben Schneiderman, David Feldman, Anna Rose, and
Xavier Ferré Grau. Visualizing digital library results
with categorical and hierarchical axes. In Proc. fifth
ACM Conference on Digital Libraries (DL’2000),
pages 57–66, 2000.

[24] Emilia Stoica, Marti A. Hearst, and Megan
Richardson. Automating creation of hierarchical
faceted metadata structures. In Proc. NAACL-HLT
2007, Rochester, NY, pages 244–251, April 2007.

43

