
Numerical Solution of One-Dimensional Duct

Flow By Method of Characteristics

Nadav Har'El

September 13, 1994

Abstract

This report describes the method of characteristics for numerical computation

of ows in a duct of smoothly varying cross-section area, that can be approximated

as one dimensional (quasi-one dimensional approximation). An inverse-marching

method of characteristics is developed for polytropic gas, and results from a pro-

gram based upon those algorithms are presented, and are compared with results of

the GRP conservation laws scheme. A modi�ed interpolation algorithm was em-

ployed in order to maintain gradient discontinuities in the ow (e.g., at the head

and tail characteristics of a centered rarefaction wave).

Contents

1 Introduction 3

2 The equations governing quasi one-dimensional ow 4

3 The di�erence scheme for a continuous solution 6

4 Solving the di�erence scheme 7

4.1 First guess for characteristics : 8

4.2 Find intersections : 9

4.3 Interpolation : 9

4.4 A new approximation in point 4 : 12

4.5 Check if we're done : 13

4.6 New characteristics slope : 13

4.7 Continue : 13

5 Results 13

5.1 Reecting boundary : 13

5.2 Area reduction : 15

6 Acknowledgment 18

List of Figures

1 Cylindrical tube : 3

2 Varying area tube : 3

3 Di�erence scheme : 6

4 Solving the scheme : 8

5 Approximate characteristic : 9

6 Algorithm with interpolation only : 10

7 Interpolation and extrapolation : 10

8 Algorithm with extrapolation only (ow variables P ,u,S) : : : : : : : : : 11

9 Algorithm with extrapolation and interpolation (ow variables P ,u,S) : : 12

10 Characteristics in reection example : 14

11 P(t) on boundary in reection example : : : : : : : : : : : : : : : : : : : 15

12 P(t) on boundary in reection example : : : : : : : : : : : : : : : : : : : 16

13 A(x) for area reduction example : 17

14 U in area reduction example : 17

15 P in area reduction example : 18

2

x

Figure 1: Cylindrical tube

x

Figure 2: Varying area tube

1 Introduction

When talking about one-dimensional ow, we are talking about ow on a line without

width, or equivalently, a ow in a cylindrical tube (see �gure 1) with a constant radius

r (or equivalently, a constant cross-section area A = �r

2

), assuming that the ow is

dependent only on x and t, and is independent of the other dimensions, i.e.

u(x; y; z; t) = u(x; t)

A simple generalization of ow in a constant cross-section tube, is a ow in a rigid

tube with varying cross-section area (see �gure 2), but still assuming one-dimensional

spatial variation, i.e. the ow variables are still dependent only on x and t, and the the

ow velocity u is assumed to be a vector in the x direction. Such an assumption is called

a quasi one-dimensional approximation. Since the tube is assumed to be rigid, the area

A of the cross-section depends only on x, and not on t. The generalization is called an

approximation, since obviously the assumption that the ow u depends only on x (and

t) can't be true, since the x-direction ow at the oblique tube boundary surface cannot

penetrate it. However, for tubes whose cross-section areas don't change too fast, the

approximation is believed to be good.

The fact that we assume that A is constant in time (i.e. the tube is rigid) has two

consequences: First, no work is done by the tube on the uid, so we will expect to have

energy conservation. However, unlike the case of the constant area cylinder where the

uid does not exert forces on the tube (since the ow direction is parallel to the tube

everywhere), here the uid exchanges axial momentum with the tube surface, so there is

no momentum conservation in the uid.

3

2 The equations governing quasi one-dimensional

ow

It is a standard result, that the QODA (quasi one-dimensional approximation) ow is

governed by the following 3 equations, derived from mass, energy and momentum con-

servation for an inviscid uid:

�

t

+ �u

x

+ u�

x

+ ��u = 0 (1)

u

t

+ uu

x

+

1

�

P

x

= 0 (2)

e

t

+ ue

x

+

1

�

Pu

x

+

�

�

Pu = 0 (3)

Where � is the rate of change of logA, i.e.

�(x) =

A

0

(x)

A(x)

Note that if we take the cylindrical tube case, where A is constant, or � � 0, we get the

usual one-dimensional equations.

We shall now transform equations (1)-(3) assuming a polytropic (-law) gas, using

as dependent variables �, u, and S (we shall still use the shortcut c

2

, but will rewrite

expressions containing P and e in terms of � and S). A polytropic gas is an ideal gas (i.e.,

P� = RT), for which e = c

v

T (with a constant c

v

). A polytropic gas has the equation of

state P (�; S) = A(S)�

, where A(S) = const � e

S=c

v

. Let

P = P (�(x; t); S(x; t))

then

P

x

=

@P

@�

�

x

+

@P

@S

S

x

But by de�nition,

@P

@�

= c

2

@P

@S

=

@(A�

)

@S

=

@A

@S

�

=

A�

c

v

=

c

2

�

c

v

So we get

P

x

= c

2

�

x

+

c

2

�

c

v

S

x

(4)

Also, we know that

P

�

=

A�

�

= A�

�1

=

c

2

(5)

Also, if we look at

e = e(�(x; t); S(x; t))

4

we get:

e

t

=

@e

@�

�

t

+

@e

@S

S

t

e

x

=

@e

@�

�

x

+

@e

@S

S

x

Where by de�nition (note that 6= 1),

@e

@�

=

@

@�

A

 � 1

�

�1

!

= A�

�2

=

c

2

�

@e

@S

=

@

@S

A

 � 1

�

�1

!

=

@A

@S

�

�1

 � 1

=

A

c

v

�

�1

 � 1

=

c

2

c

v

(� 1)

So we get

e

t

=

c

2

�

�

t

+

c

2

c

v

(� 1)

S

t

(6)

e

x

=

c

2

�

�

x

+

c

2

c

v

(� 1)

S

x

(7)

Now, we use equations (4), (5), (6) and (7) in equations (1)-(3), to get (after eliminating

c

2

= from the last equation):

�

t

+ �u

x

+ u�

x

+ ��u = 0 (8)

u

t

+ uu

x

+

c

2

�

x

�

+

c

2

c

v

S

x

= 0 (9)

�

t

�

+

S

t

c

v

(� 1)

+ u

�

x

�

+

S

x

c

v

(� 1)

!

+ u

x

+ �u = 0 (10)

Finally, we can use equation (8) to eliminate most terms of equation (10), and get the

following basic equations governing QODA ow:

�

t

+ �u

x

+ u�

x

+ ��u = 0 (11)

u

t

+ uu

x

+

c

2

�

x

�

+

c

2

c

v

S

x

= 0 (12)

S

t

+ uS

x

= 0 (13)

Since we are interested in a method of characteristics, we are interested in convert-

ing this system of equations into an equivalent system in the characteristic form, i.e.

�nd three equations which make an equivalent system (i.e. those equations will be lin-

ear combinations of the equations (11)-(13)), where in each equation there will be one

characteristic direction, in which all derivatives in that equation are made. The method

of �nding those characteristic directions and characteristic equations is straightforward:

we take a general linear combination of the three equations: �

1

(11) + �

2

(12) + �

3

(13) = 0

5

t

x

4

C

+

1

C

0

3

C

�

2

Figure 3: Di�erence scheme

and then try to �nd vectors (�

1

; �

2

; �

3

) which make the linear combination have only

derivatives in a single direction. This gives us the following equations:

Characteristic directions: (14)

I

+

: x

�

= t

�

(u+ c)

I

�

: x

�

= t

�

(u� c)

I

0

: x

!

= t

!

u

Characteristic equations: (15)

II

+

: u

�

+

2

 � 1

c

�

=

c

c

v

(� 1)

S

�

� �cut

�

II

�

: u

�

�

2

 � 1

c

�

= �

c

c

v

(� 1)

S

�

+ �cut

�

II

0

: S

!

= 0

Note that similar equations (with � � 0) appear in [CF48, page 199], but the last

line there is completely wrong | it should be � = S=c

v

. I have thoroughly checked

that my equations are correct, and those of [CF48] can't be correct - the dimensions are

inconsistent.

We usually write �

+

= u +

2

�1

c and �

�

= u �

2

�1

c (these are called the Riemann

invariants since as the characteristic equations show, in the case of planar one-dimensional

ow (� � 0) and no shocks (S is constant), we get that �

+

is invariant along the I

�

characteristic, and �

�

is invariant along the I

+

characteristic).

3 The di�erence scheme for a continuous solution

In this section we will use the characteristic equations (14) and (15) to develop a di�erence

scheme for numerical solution of the initial value QODA ow problem. We will currently

assume the ow is continuous, i.e. there is no shock wave in the initial data, and no shock

wave appears at a later time. It is possible to extend the present scheme to treat the

tracking or formation of shock, but at the present version we chose not to do so.

Let's take a look at a given point in space-time 4 (see �gure 3), and the three char-

acteristics emerging from it backward in time (but note that the characteristics do not

have to be straight lines, as they are schematically depicted), and one other point on

6

each of those characteristics: 1;2, and 3. We shall now write the three characteristic

equations (15) in a �nite di�erence form, by writing each equation along the respective

characteristic, and multiplying II

+

by d� and so on. We get

C

+

: ��

+

=

"

c

c

v

(� 1)

#

�S � [�cu]�t (16)

C

�

: ��

�

=

"

�

c

c

v

(� 1)

#

�S + [�cu]�t

C

0

: �S = 0

Or, more precisely,

C

+

: �

+

4

� �

+

1

=

"

c

c

v

(� 1)

#

4;1

(S

4

� S

1

)� [�cu]

4;1

(t

4

� t

1

) (17)

C

�

: �

�

4

� �

�

2

=

"

�

c

c

v

(� 1)

#

4;2

(S

4

� S

2

) + [�cu]

4;2

(t

4

� t

2

)

C

0

: S

4

= S

3

Where [� � �]

i;j

denotes some kind of average of the expression over the appropriate char-

acteristic segment. We take this average, and not just the value at the other point, to

make the scheme more accurate. Indeed, assuming monotonic change of the character-

istic slope, the �nite di�erence relations (17) become exact for some (unknown) convex

combination of endpoint values. The arithmetic average [� � �]

i;j

is an approximation to

that unknown mean value.

4 Solving the di�erence scheme

The algorithm that will be shown here for solving the di�erence scheme is called inverse

marching. Unlike other, more direct algorithms for solving the characteristic di�erence

equations (such as following characteristics lines continuously), that algorithm has the

bene�t of employing a predetermined space-time lattice, i.e. the algorithm takes an array

of ow variable values at one time, and calculates the new values at those points at the

new time. That has two bene�ts: �rst it allows for easier computer implementation,

since simple arrays can be used for storing values, and second, the grid points on which

the solution is calculated do not get sparser, even if the characteristics diverge.

Let's assume the solution of the ow on the space grid at time t

n

is known, and we

want to �nd the ow variables at the next time t

n+1

in the grid point 4 (see �gure 4).

We'll assume the characteristics going back in time intersect with the time t

n

at the trace

points 1, 2 and 3, which are all within the cell to the left of 4

0

or to the right (this is

important for stability, and as we shall later see, for interpolation). This condition can

be easily satis�ed if �t is chosen su�ciently small.

At �rst glance, it might appear that we can just extend the three characteristics from

4, then using the known values at the trace points 1, 3, and 2 (which can be found by

somehow interpolating the values already known on the grid at time t

n

) in the di�erence

7

t

t

n+1

t

n

x

4

4

0

1

C

+

3

C

0

2

C

�

Figure 4: Solving the scheme

scheme (17) we readily calculate S

4

, �

�

4

, �

+

4

, and from it the other ow variable values in

4. However, there is one aw in this scheme: how do we know what the characteristics

look like, if we don't know the ow variable values at 4? It appears we have a problem

with an implicit situation, and the solution that comes to mind is to use an iterative

technique for solving it.

We suggest the following iterative algorithm for �nding the ow variables at 4. First

we shall shortly outline the algorithm, then explain in detail each step:

1. First guess for slopes u� c and u of characteristics: As �rst guess we assume ow

variables have not changed much since time t

n

, and we'll take the values of u � c

and u in 4

0

as the �rst guess.

2. By the last guess for the characteristics' slopes calculate an approximation for the

location of 1, 2 and 3.

3. Interpolate the values of the ow variables in points 1, 2 and 3, by using the known

values on the grid at time t

n

.

4. Solve the di�erence scheme (17) to get a new approximation for �

+

, �

�

, and S at

point 4. Then from those values calculate the other ow variables.

5. If the current approximation is close enough to the previous approximation, then

use it as the solution in point 4, and stop the iterations.

6. Calculate new characteristics' slopes, by averaging current approximation of u� c

and u at the point 4 and at the respective trace points.

7. Go to step 2

The detailed algorithm follows:

4.1 First guess for characteristics

The characteristics emerging from 4 are not necessarily straight lines. However, if �t is

not too large, they can be approximated by straight lines, emerging from 4 with a certain

slope (see �gure 5). The appropriate slope is (by Lagrange's theorem) the same as the

slope of the characteristic in a certain, unknown, midpoint. Since we don't know that

point, we'll further approximate this slope by the average slope of the characteristic at

the two endpoints 4 and 1, or

1

2

((u+ c)

4

+ (u+ c)

1

).

8

4

1

C

+

slope a

+

Figure 5: Approximate characteristic

However, at this stage we have no idea at all where the intersection points 1, 2, and 3

might be, so we'll try to further approximate the characteristics' slopes by using only the

characteristics' slopes at point 4, which are (u� c)

4

and u

4

. However, although we know

where the point 4 is, we have no idea about the values of u and c there. So we'll assume,

as our �rst guess, that those values haven't changed much since the time t

n

(which makes

sense if the ow is smooth and �t is not too large). So, �nally, we can make our �rst

guess for the values of u and c at 4:

u

4

:= u

4

0

c

4

:= c

4

0

And for the characteristic's slope:

a

+

:= (u+ c)

4

0

a

�

:= (u� c)

4

0

a

0

:= u

4

0

Where the assignment \ := " means assignment as in a computer program, i.e. the

value of the right hand side is assigned as the new approximation for the left hand side.

On such assignments, variables in the right hand side mean the previous approximations

of those variables, or known values (just like variables in computer languages).

4.2 Find intersections

If we assume the characteristics are approximately straight lines with the slopes a

�

, a

0

(which were assigned before), then it is straightforward to �nd an approximation for

the intersections of the characteristics at time t

n

, i.e. the trace points 1, 2 and 3 (see

�gure 4): if we write the x coordinate of trace point i as x

i

, we assign

x

1

:= x

4

� a

+

(t

n+1

� t

n

)

x

2

:= x

4

� a

�

(t

n+1

� t

n

)

x

3

:= x

4

� a

0

(t

n+1

� t

n

)

4.3 Interpolation

Now that we have a guess for the location of the points 1, 2 and 3, we want to interpolate

the ow variables there, or actually just S and �

�

from which the other ow variables

9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-20 -10 0 10 20 30 40 50 60
u(

x)

x

Figure 6: Algorithm with interpolation only

u

x

x

i+1

x

i

x

i+2

x

i�1

x

Figure 7: Interpolation and extrapolation

can be calculated. This seems very straightforward, but as it turns out, it is probably the

most di�cult point of the algorithm. At �rst, I tried using simple linear interpolation

(using the two adjacent grid points). However, the results were poor. It turns out that if

the ow has a jump in spatial gradient, as in the simple case of rarefaction fan (where all

ow variables are constant ahead and behind the fan and vary smoothly through the fan)

then the interpolation has very bad accuracy near the points of gradient jump | where

the line between the two grid points is a bad approximation of the function itself. See

�gure 6 for an example of what happened when starting with a centered rarefaction wave

some time after its creation, when it spanned 10 grid points (we couldn't take the time

of the creation as initial data, since it is not continuous) and running 50 cycles { using

linear interpolation as the only means of interpolation. In this sample case, the initial

discontinuity giving rise to the centered rarefaction wave is at (x; t) = (0; 0), the grid

step is �x = 1, and the rarefaction wave is such that (u+c)

left

= 0:22(u+c)

right

. As can

easily be seen, the result (solid line) is a severely smoothed out version of the accurate

analytic solution (dashed), which has a sharp gradient discontinuity at two points.

10

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-20 -10 0 10 20 30 40 50 60
u(

x)

x

Figure 8: Algorithm with extrapolation only (ow variables P ,u,S)

Another method of approximating the value of a function at a point not on the

known grid is by extrapolation (see �gure 7): instead of approximating the function at

point x between x

i

and x

i+1

by a linear function as in interpolation, we approximate the

function by linearly extrapolating the function values at x

i+1

and x

i+2

on the right, and

the function values at x

i�1

and x

i

on the left, therefore the approximating function is not

smooth but rather contains a gradient discontinuity at some point. By looking at �gure 7,

we see that in the case a gradient discontinuity in the interval (x

i

; x

i+1

) containing x,

the extrapolating function (lower, non-smooth dashed line) is much closer to the real

function (solid line) than the interpolating function (higher dashed line). Because it

looks so promising, we may now try the algorithm with extrapolation as the sole means

of interpolating values.

When trying the algorithm with extrapolation on the rarefaction fan example, the

results were perfect. However, this is not a proof that extrapolation is good | on the

contrary: as we said, we want to extrapolate S and �

�

, which are all piecewise linear

functions in this example. Obviously, for such functions extrapolation is indeed perfect,

but such functions do not occur in more general cases (e.g., non-planar ow). To simulate

a realistic situation, where the interpolated functions are not linear, but still use our

example (to which an accurate analytic solution is known) we simply change the scheme

to interpolate S, P (which is not linear), and u, and then calculate the other ow variables

from them. Now we had the result we feared: although extrapolation is very good near

the gradient discontinuities, it is less accurate than interpolation where the function is

smooth. Moreover, the errors started growing and traveling in the characteristic direction,

and the result was a poor, wavy, graph (see �gure 8).

We have seen that interpolation does well in segments where the function is smooth,

while extrapolation does well in the other segments, where the function derivative is

discontinuous. The obvious choice now would be to use extrapolation only in those

intervals, and interpolation everywhere else. However, this is not straightforward: we do

not want to track or somehow calculate the location of the gradient discontinuity, since

11

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-20 -10 0 10 20 30 40 50 60
u(

x)

x

Figure 9: Algorithm with extrapolation and interpolation (ow variables P ,u,S)

that will be possible only in special cases such as the rarefaction wave, where we know

where the gradient discontinuity started, and how it moves. The only way we can try to

guess where the gradient discontinuity is, is by using the fact that the absolute value of

the numeric second derivative in such a point is a local maximum. Not all such maxima,

however, are gradient discontinuities.

It is important for the algorithm choosing between interpolation and extrapolation

to have two properties: �rst, extrapolation must be used, almost always, in intervals of

real gradient discontinuities. Second, extrapolation should be used in as few as possible

other intervals. After some experimentation, we have decided upon using the following

algorithm: extrapolation is used in an interval if the numeric second derivative in it is

maximum in the �ve adjacent points (�ve on the left and �ve on the right). Such an

algorithm gave us very nice results for the rarefaction wave example (again with non-

linear P being interpolated, otherwise the results will simply be totally accurate). See

�gure 9 for the graph of the result.

4.4 A new approximation in point 4

We want to use the di�erence scheme (17) to �nd a new approximation for S

4

, �

+

4

, �

�

4

.

We already have a current approximation for the terms t

4

� t

1

, t

4

� t

2

, S

3

, �

+

1

, �

�

2

, S

2

,

and S

3

, which we will use. We also have to consider the [�cu]

4;1

and similar expressions:

if we hadn't been using an iterative method, we would have had to use only the value

at 1. However in an iterative method we can improve accuracy by using the average of

the previous approximation at 4 and the approximated value at 1. We can now rewrite

equation (17) as (note that we use R = c

v

(� 1)):

S

4

:= S

3

�

+

4

:= �

+

1

+

c

4

+ c

1

2R

(S

3

� S

1

)�

1

2

(�

4

c

4

u

4

+ �

1

c

1

u

1

)(t

n+1

� t

n

)

12

�

�

4

:= �

�

1

�

c

4

+ c

2

2R

(S

3

� S

2

) +

1

2

(�

4

c

4

u

4

+ �

2

c

2

u

2

)(t

n+1

� t

n

)

From S

4

, �

+

4

and �

�

4

, we can calculate the other ow variables' values at point 4.

4.5 Check if we're done

If the current approximation is close enough to the previous one, we are done and the

current approximation of ow variables in 4 are the values we wanted, i.e. the solution

to the implicit di�erence scheme (17). There are many possibilities for checking if the

approximation is close enough. What I did in my program, for example, is to de�ne an

error measure

E :=

jP

4

� P

4p

j

P

4p

+

jS

4

� S

4p

j

S

4p

+

ju

4

� u

4p

j

c

4p

(where P

4p

is the previous approximation for P

4

), and stop the iterations if E < ", where

" is some small number, such as " = 10

�14

in my program.

4.6 New characteristics slope

As I explained in step 1, we approximate each characteristic by a line emerging from 4 at a

certain slope, which we are trying to approximate now. That slope will be approximated

(as explained there) by the average of the slopes of the characteristics at its two end

points, 4, and the other appropriate point. Therefore we have a new approximation for

the slopes, by using the new approximations of u and c at 4:

a

+

:=

1

2

((u+ c)

4

+ (u+ c)

1

)

a

�

:=

1

2

((u� c)

4

+ (u� c)

2

)

a

0

:=

1

2

(u

4

+ u

3

)

4.7 Continue

Go to step 2. The new approximation for characteristics slope will be used (just as the

�rst guess was used in the �rst iteration) to make another approximation.

5 Results

I have written a fortran program based on the aforementioned algorithm. After we

were pleased with its solution of the simple planar rarefaction wave (see �gure 9), giving

a totally accurate solution (all signi�cant digits match the analytic solution), we tried

other, more interesting, problems.

5.1 Reecting boundary

In this section we will make the centered rarefaction wave a little less trivial, by putting

a reecting boundary condition (rigid wall, i.e., u = 0) on the right boundary, causing

13

0

50

100

150

200

250

t

x

Figure 10: Characteristics in reection example

the rarefaction wave that arrives at that boundary to be reected, and the reected

wave interacts with the original wave | after which the wave is no longer a simple

wave. See �gure 10 for a sketch of the characteristics created by the program, to better

understand the example. Note that the �rst reection seen in the �gure is a reection of

C

+

characteristics to C

�

characteristics by the reecting boundary. However the second

(left) reection seen in the �gure is not a reection (the left boundary is not reecting)

but rather new C

+

characteristics that enter from that non-reecting boundary (these

characteristics are parallel far enough to the left outside the picture, but are bent by

the C

�

characteristics. These characteristics are not meaningful for understanding the

reection at reecting boundary).

One of the many interesting things to check for assessing the accuracy of the scheme is

the pressure history P (t) on the right boundary (it should remain constant until the wave

arrives at that boundary, then vary for some time, and when the wave passes, remain a

new constant, which can readily be calculated analytically, so it is easy to compare with

our results). We ran the problem both on GRP and on our inverse-marching QODA

algorithm. The results can be seen in �gure 11. The limit lim

t!1

P (t) was found to be

the same in both numerical schemes, and turned out to be equal in all signi�cant digits

to the analytic limit that was calculated. However, although the GRP (dashed) and

QODA (solid) lines are very close, they are not exactly equal. We wondered why there

is such a di�erence, and does that di�erence disappear as both methods' number of grid

points tends to in�nity (i.e. �x! 0). In �gure 12 we see that indeed both methods seem

to converge to the same limit as the number of grid points is increased (the solid lines

are QODA's results, with N = 100, N = 200, N = 400 from left to right, and the dashed

14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250

P
(t

)

t

Figure 11: P(t) on boundary in reection example

lines are GRP's results, with N = 100, N = 200, N = 400, N = 800, this time from right

to left). We can also see from �gure 12 that QODA's results tend to be much shaper (i.e.

preserve derivative discontinuities) than GRP's, but not necessary more accurate, since

after all the di�erence scheme provides only an approximation.

5.2 Area reduction

In this section we try to replicate the result in [IF86, �gure 4], where we initially have a

centered rarefaction wave, in a tube with area reduction ofA

1

=A

0

= 0:25. More precisely,

we have again a centered rarefaction wave, but this time with a varying cross-section duct,

with variance as shown on the title page (for the exact function, see �gure 13). For a more

precise formulation of the parameters used, see table 1 (these parameters were chosen to

give results similar to those in [IF86, �gure 4]).

We ran the program on that problem, but since a centered rarefaction wave is initially

discontinuous, we instead gave as initial condition the continuous wave, at the time the

rarefaction wave spanned 10 cells. That initial condition is equivalent to a centered

rarefaction wave, centered at t = 0 and x = 0. We plotted the pressure and velocity

graphs at increasing times (see �gures 14 and 15), to get a plot which gives an impression

of traveling waves. The graphs turn out to be very similar to those in [IF86, �gure 4],

however they seem less noisy (the GRP method used there, while being a much better

method than the RCM method also used there, still gives output which is a little wavy

and smeared, unlike the inverse marching QODA method's almost straight lines and

derivative discontinuities).

15

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

0.17

130 135 140 145 150 155 160 165 170

P
(t

)

t

Figure 12: P(t) on boundary in reection example

parameter value

Number of cells 220

Cell �x 0.1

x range -5: : : 17

 1.4

P

1

=P

0

0.8

u

0

0

�

0

1

A(x) see �gure 13

boundary non-reecting boundary condition

Table 1: Parameters for area reduction example

16

0

0.25

0.5

0.75

1

6.321 7.321

A
(x

)

x

A(x) =

8

>

>

<

>

>

:

1 if x < 6:321

0:25 if x > 7:321

exp

�

1

2

log(

1

4

)(1� cos�(x� 6:321))

�

otherwise

Figure 13: A(x) for area reduction example

u

x

Figure 14: U in area reduction example

17

P

x

Figure 15: P in area reduction example

6 Acknowledgment

None of the above algorithms and results would have been possible, without the help of

Prof. J. Falcovitz, who guided me throughout the project.

Illustrations for this report have been prepared with Collin Kelley and Thomas

Williams' gnuplot 3.5, and by gpic, James Clark's implementation of Brian W. Kernig-

han's pic. Gnuplot was also a great help for visualizing data while writing the program.

This report was typeset with Donald Knuth's T

E

X 3.1415, with Leslie Lamport's

L

a

T

E

X macro package.

References

[CF48] R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves, volume 1

of Pure And Applied Mathematics. Interscience Publishers, New York, London,

August 1948.

[IF86] Ozer Igra and Joseph Falcovitz. Numerical solution to rarefaction or shock

wave/duct area-change interaction. AIAA Journal, 24(8):1390, August 1986.

18

