
Hspell's Short Road,

from Ideas into Perl Code

Nadav Har'El

�

May 11, 2003

y

Abstrat

Hspell is a free Hebrew linguisti projet, whose primary objetive was to reate

a free Hebrew spell-heker. In this paper we shall give a short introdution to the

problem of Hebrew spell-heking, highlight our approah, and then fous on one part

of the ode, the noun inetor, giving examples and explaining why Perl was hosen

from day one as the language used by this projet. We will show how Perl allowed us

very quik prototyping, and how its built-in and powerful string-handling apabilities

allowed us to easily transfer our linguisti ideas into ode.

1 Introdution

The term free software was adopted [12℄ by Rihard Stallman in 1984, for software whose

authors deided to share it with the rest of the world, freely, as well as to give the users the

freedom to see the program's soure ode, modify it, and share the original program or the

modi�ed versions with others.

Sine then, many people wrote more and more free software. Perl, the topi of this

onferene is one example of free software. A major boost to free software ame in 1991

when Linus Torvalds wrote the �rst omplete free kernel, Linux [10℄. Later ame \Linux

distributions", large olletions of free software meant to be easy to install by end users,

user-friendly desktop environments (like KDE and Gnome), and software that desktop users

have ome to expet, like oÆe suites.

However, until reently, typial Israeli users were unable to swith over to free software

beause of the lak of Hebrew support throughout the system. In June of 1999, the author

(Nadav Har'El) expressed the need for better Hebrew support in free software and reated

the Ivrix mailing list [11℄. By January 2000, it beame lear that while support for Hebrew

was planned in the big free software projets (suh as Web browsers, desktop environments

and word proessors), there were a few Hebrew-spei� programs that were not likely to

�

The work desribed here was a joint e�ort with Dan Kenigsberg. For more information, see the projet's

website, http://www.ivrix.org.il/projets/spell-heker/

y

�rst appeared in proeedings of Yet Another Perl Conferene, Haifa, May 2003.

1



miraulously appear. One of these important missing piees was a Hebrew spell-heker, and

so we (Dan Kenigsberg and Nadav Har'El) set out to write one.

Setting our sights on a modest initial goal and hoosing Perl for the projet's ode allowed

us to produe a prototype in about a week. This prototype only reognized a tiny minority of

the Hebrew language, and did not inlude a usable front-end, but it proved that our approah

was viable and had a lot of potential.

After this prototype, the projet was abandoned until we returned to working on it in

Otober of 2002. Less than two months later, the �rst fully funtional release was made,

reognizing a useful perentage of the orret Hebrew words. Perl's string-handling power

and its simpliity made it easy for us to extend the original prototype, and to spend our time

and e�orts worrying about linguisti issues, rather than spending them on programming

details. Later, when we found existing spell-heking front ends unsuitable for our needs at

the time, Perl allowed us to write a di�erent one in a mere few hours.

This artile attempts to give an outline of how the Hspell spell-heker works, and a taste

of some tehniques and Perl ode used to implement one part of the whole system, the noun

inetor. Setion 2 will give a short introdution to our approah for Hebrew spell-heking.

Setion 3 will explain in a little more detail one important part of the Hspell ode, the

noun-inetor, written (as was the rest of the ode) in Perl.

Understanding setion 3 and the examples it ontain requires familiarity with Hebrew.

Familiarity with Perl is also assumed for the Perl ode examples.

2 Hspell's approah

2.1 Assumptions

Keeping in mind a few assumptions an help the reader better understand Hspell's approah

(please read this a few times before rying out \why doesn't Hspell do ... ?"):

� Hspell is the labor-of-love of two individuals - it is not a ommerial enterprise with

dozens or employees or a twenty-year magnum opus. In fat, my original estimate

was that Hspell would be done in 2 person-months. This estimate has proved to be

somewhat optimisti, but even if the �nal version will have taken 6 months of work,

that is nothing ompared to the 100 person-years that the Rav-Millim projet boasts

on its web-site [7℄, for example.

� Hspell's raison d'être is being a spell-heker for niqqud-less text. While we have ideas

on how to later extend this projet, suh as to analyze syntax, understand and add

niqqud, and a full ditionary (de�nitions or translations), these will not be done in this

phase of the projet.

A spell-heker heks words one at a time, without trying to understand ontext.

This brings about, and even more so in Hebrew than in languages like English, false

negatives, i.e., misspellings whih are reognized as a valid word. But this will be true

of every Hebrew spell-heker that does not attempt to understand ontext.

� For Hspell to be free of other people's opyright restritions, it is a lean-room imple-

mentation, not based on other ompanies' word lists, on other ompanies' spell hekers,

or on opying of printed ditionaries.

2



However, we did use books like [1, 5, 6, 4℄ to help us design our algorithms, ditionaries

like [7, 3, 2℄ were used to verify ertain words, and various Hebrew newspapers and

books, both printed and online, were used for inspiration and for �nding words whih

we still had not reognized.

2.2 Hspell's basi struture

The most fundamental design deision behind Hspell is that it is word-list based. This means

that the Hspell spellheker front-end is a rather dumb spell-heker, whih basially only

needs to look up words in a list to see if they are valid. Very few, if any

1

, linguisti rules

need to be built into the spell-heker, and instead all the \brains" go into the word-list

generators, the programs whih generate the lists of valid words. Compare this to another

possible design, where a smart spell-heking algorithm looks at a given word, and heks if

it an be orretly derived from a known base-word.

Setion 3 will disuss in greater depth the word-list generators, written in Perl. Our

urrent hspell front-end (also written in Perl) is unfortunately beyond the sope of this

artile.

This basi struture is one of the most ontroversial aspets of Hspell's design, but it was

hosen for good reason. Firstly, one a word-list is available, it ould be used by existing

spell-heking appliations like ispell[8℄ and aspell[9℄. Seondly, we found forward word

derivation, �nding for a given word its inetions (úåéèð), easier to program than bakward

derivation (given an inetion, trying to infer whih rules ould have been used to built it).

Forward derivation is also very easy to split into ases (di�erent setions or the ode, or even

separate programs, inet di�erent types of words), reating simpler and more readable ode.

One of the downsides of a wordlist-based spell-heker is relatively-high memory use

2

for

holding the huge lists. This is why in the future, Hspell will most likely use an interesting

ross of the word list and the bakward derivation approahes: The �rst step will be building

a word list, but the seond step will be aÆx-ompressing it, automatially reognizing base

words whih aept ommon sets of pre�xes and and suÆxes. The nie thing is that this

approah keeps all of the word-list approah's bene�ts. In partiular, all of the linguisti

information and algorithms are kept in the word-list generators. Also, existing spell hekers

like ispell

3

an already deal with aÆx-ompressed word-lists eÆiently.

2.3 Hspell's spelling standard

As already mentioned, at this stage Hspell works only on niqqud-less texts. Hspell was de-

signed to be stritly ompliant with the oÆial niqqud-less spelling rules ("ãå÷éðä øñç áéúëä",

olloquially known as "àìî áéúë"), published by the Aademy of the Hebrew Language. This

is both an advantage and a disadvantage, depending on the user's viewpoint. It's an ad-

vantage beause it enourages a orret and onsistent spelling style throughout the user's

1

the issue of partile pre�xes will be disussed later

2

disk usage of the word list was never an issue beause of a ompression tehnique we use that is beyond

the sope of this artile. A 350,000 word list �ts in about 90K - only about 2 bits per word!

3

MySpell, the spellheker used by OpenOÆe.org and Mozilla, is based on ispell and thus also supports

aÆx-ompression. AÆx-ompression support in aspell does not yet exist, but is planned.

3



writing. It is a disadvantage, beause a few of the Aademia's oÆial spelling deisions are

relatively unknown to the general publi. Future versions of Hspell might inlude an op-

tion for alternative spelling standards, and the design of the word-list generators makes this

relatively easy to do.

3 The word-list generators

3.1 Introdution

A list of valid Hebrew words annot be built solely by olleting the list of words in available

Hebrew douments, beause there is no way to guarantee that suh a list will be orret (not

ontain misspellings, useless proper names, slang, and so on), omplete (ertain inetions

might not appear in the hosen samples) or onsistent in its spelling standard.

Instead our idea was to build (manually, using online texts for ideas and ditionaries for

veri�ation) a list of base words, whih are automatially ineted by a program, a word-list

generator whih will generate all the valid inetions.

For example, the following input line says that áìë (dog) is a noun:

ò áìë

In this spei� ase, no further hints are needed for orret inetion (this is disussed

below), and the word-list generator will output all the valid inetions:

íáìë ïáìë äáìë åáìë ïëáìë íëáìë êáìë êáìë åðáìë éáìë -áìë áìë

íäéáìë ïäéáìë äéáìë åéáìë ïëéáìë íëéáìë êééáìë êéáìë åðéáìë ééáìë -éáìë íéáìë

It should be noted that the generated word list does not inlude the various forms of the

word with a partile. Partiles are pre�xes formed from the single Hebrew letters á"ìëå äùî

that funtion as prepositions, onjuntions or artiles. For example, åðéáìë (our dogs) will be

found in the list, but åðéáìëùëå (and when our dogs) will not.

This deision was made for a pratial reason, as it allows the generated word list to

be an order of magnitude smaller than the list with all possible ombinations of partiles.

Instead of the the word list ontaining all the possible words with all the possible partiles,

the hspell front end tries to remove possible partile pre�xes from the words it heks. In the

�rst release, hspell always allowed every pre�x for every word, but this is gradually being

improved; For example, while the de�nite artile ä makes sense on a noun, it does not on

the imperative form of a verb. Letting the front-end spell heker know whih word aepts

whih set of pre�xes will in fat be the �rst stage towards aÆx ompressionmentioned earlier.

Hspell now uses two separate word-list generators, both written in Perl: one that inets

nouns and adjetives, and one that inets verbs, and we will go into a little detail on the

�rst below. These inetors an also feed on one another (e.g., the verb inetor generates

gerunds, whih are nouns and an be further ineted as suh), and to the generated word

list we later also add a list of extra words, like various prepositions, proper names, numbers,

aronyms, and other misellaneous words that annot be ineted.

4



Despite their name, the word-list generators are apable of muh more than just reating

a list of valid Hebrew words, and are useful not only for spell-heking. They an write

detailed output explaining exatly how eah inetion was reated, and this output ould be

used for everything from �nding the reasonable set of partile pre�xes that a word aepts,

to a full morphologial analysis of given words.

In the rest of this setion we will explain, in a little more details, how noun inetion

works. Unfortunately, it is beyond the sope of this artile to over the omplete details, and

we will also not be able to over adjetive or verb inetion at all.

3.2 Noun inetion

The noun and adjetive inetor is a Perl program alled wolig.pl

4

that works on an input

�le listing base words (nouns and adjetives), and possible hints on how to inet them.

It is obvious that wolig does need hints for orret inetions. The easiest hints to

understand the need for are pluralization hints: how ould wolig possibly know that while

the plural of óå÷ is íé�å÷, the plural of óåò is úå�åò? Or that the pair úåøéù,íéúåøéù is di�erent

from úåøéç,úåéåøéç? It an't. To get these words orretly ineted the input �le should

ontain the lines:

úå,ò óåò

íé,ò úåøéù

The hint (ò) tells wolig that this a noun (not an adjetive), and the úå or íé tells it whih

plural form is appropriate for that word. Other supported pluralization types:

úåé,ò äðùî

úåà,ò äáö÷

íéé,ò áøâ

ãéçé,ò ïùò

úåðá=íéáø,ò úá

Where íéé refers to the pair-plural (whih in niqqud-less spelling will indeed look like íéé),

and ãéçé says there is no plural form for this word. In the last example, the word has a

ompletely irregular plural, so it is assigned expliitly, and the rest of the plural inetions

will be automatially derived from it. Some words have more than one valid pluralization:

íéé,íé,ò ùãåç

íéé,úå,ò äòù

íé,úå,ò øá÷

íéùðà=íéáø,íé,ò ùéà

úåú�ù=íéáø,íéé,úå,ò ä�ù

This hint format, a exible and human-readable omma-separated list of ags and assign-

ments, made it easy for us to gradually add more ags and to more easily write (and later

read) our input �le. In Perl, understanding this sort of hint list is easy, with ode like this

splitting a single line into the base word, $word and an assoiative array %opt:

4

originally meaning \WOrdLIst Generator"

5



($word,$optstring)=split;

undef %opts;

foreah $opt (split /,/o, $optstring){

($opt, $val) = (split /=/o, $opt);

$val = 1 unless defined $val;

$opts{$opt}=$val;

}

And later in the ode the hints about the urrent word are queried with statements like

if($opts{"åú"}) or my $plural=$opts{"øáéí"}

While wolig needs hints to inet some nouns orretly, about 90 perent of the nouns

do not need any hint other than the "ò" saying this is a noun. This is beause most of the

time in Hebrew the plural form an be guessed just by looking at the last letter (or letters)

of the singular. For example:

íéëìî êìî

úåëìî äëìî

úåøúåë úøúåë

úåéåîë úåîë

íéáø úøåö ïéà úåéøçà

The hoie of plural form is not the only type of hint that might be needed, unfortunately.

Hebrew has many ompliations when ineting nouns with vowels, like vowels being hanged

or disappearing ompletely, and a few of these ompliations remain also for niqqud-less

spelling

5

. Other words have irregularities in some of their inetions. It is beyond the sope

of this artile to get into all these problems and over all the ases, so instead we will just

show some examples without justi�ation (eah input line is followed by the list of inetions

generated from it):

ú_øåîù,ò úéðç

íúéðç ïúéðç äúéðç åúéðç ïëúéðç íëúéðç êúéðç êúéðç åðúéðç éúéðç -úéðç úéðç

åéúåúéðç ïëéúåúéðç íëéúåúéðç êééúåúéðç êéúåúéðç åðéúåúéðç ééúåúéðç -úåúéðç úåúéðç

íäéúåúéðç ïäéúåúéðç äéúåúéðç

å_ãáà,ò ìúåë

íìúåë ïìúåë äìúåë åìúåë ïëìúåë íëìúåë êìúåë êìúåë åðìúåë éìúåë -ìúåë ìúåë

íäéìúåë ïäéìúåë äéìúë åéìúë ïëéìúåë íëéìúåë êééìúë êéìúë åðéìúë ééìúë -éìúåë íéìúë

é_ãáà,úå,ò ïåø�éò

íðåø�ò ïðåø�ò äðåø�ò åðåø�ò ïëðåø�ò íëðåø�ò êðåø�ò êðåø�ò åððåø�ò éðåø�ò -ïåø�ò ïåø�éò

ïëéúåðåø�ò íëéúåðåø�ò êééúåðåø�ò êéúåðåø�ò åðéúåðåø�ò ééúåðåø�ò -úåðåø�ò úåðåø�ò

íäéúåðåø�ò ïäéúåðåø�ò äéúåðåø�ò åéúåðåø�ò

ä_ìåâñ,íé,ò äáåø

íáåø ïáåø äáåø åáåø ïëáåø íëáåø êáåø êáåø åðáåø éáåø åäáåø -äáåø äáåø

íäéáåø ïäéáåø äéáåø åéáåø ïëéáåø íëéáåø êééáåø êéáåø åðéáåø ééáåø -éáåø íéáåø

çà_ãçåéî,ò çà

íäéçà ïäéçà äéçà åéçà ïëéçà íëéçà êéçà êéçà åðéçà éçà -éçà çà

5

lukily for us, in some ases the Aademia's oÆial niqqud-less spelling rules save us from dealing with

ertain potential exeptions. For example, the plural of æò (goat) is íéæò, not íéæéò with an extra yod.

6



íäéçà ïäéçà äéçà åéçà ïëéçà íëéçà êééçà êéçà åðéçà ééçà -éçà íéçà

ïù_ãçåéî,íéé,ò ïù

íðéù ïðéù äðéù åðéù ïëðéù íëðéù êðéù êðéù åððéù éðéù -ïù ïù

íäéðéù ïäéðéù äéðéù åéðéù ïëéðéù íëéðéù êééðéù êéðéù åðéðéù ééðéù -éðéù íééðéù

ãéçé_ïéà,ò øåâî

íäéøåâî ïäéøåâî äéøåâî åéøåâî ïëéøåâî íëéøåâî êééøåâî êéøåâî åðéøåâî ééøåâî -éøåâî íéøåâî

íéé,ãéçé_úåéèð_ïéà,ò øåçà

íäéøåçà ïäéøåçà äéøåçà åéøåçà ïëéøåçà íëéøåçà êééøåçà êéøåçà åðéøåçà ééøåçà -éøåçà íééøåçà øåçà

åéúñ=êîñð,åéúñ=ãø�ð,ò åúñ

íååúñ ïååúñ äååúñ ååúñ ïëååúñ íëååúñ êååúñ êååúñ åðååúñ éååúñ -åéúñ åéúñ

íäéååúñ ïäéååúñ äéååúñ åéååúñ ïëéååúñ íëéååúñ êééååúñ êéååúñ åðéååúñ ééååúñ -éååúñ íéååúñ

úåøéáâ=íéëîñð,úåøáâ=íéáø,ò úøáâ

íúøáâ ïúøáâ äúøáâ åúøáâ ïëúøáâ íëúøáâ êúøáâ êúøáâ åðúøáâ éúøáâ -úøáâ úøáâ

äéúåøéáâ åéúåøéáâ ïëéúåøéáâ íëéúåøéáâ êééúåøéáâ êéúåøéáâ åðéúåøéáâ ééúåøéáâ -úåøéáâ úåøáâ

íäéúåøéáâ ïäéúåøéáâ

In addition to dealing with, or guessing, the various hints, and generating the orret

inetions based on them, the wolig program also needs to deal with the orret rules of

niqqud-less spelling. For example, the orret onstrut-state (êîñð) form of äéø÷ is -úééø÷,

beause the rules say that a onsonant yod is usually doubled, but not next to a vowel letter

(in this ase, the ä).

The way wolig deals with niqqud-less spelling rules is simple, and yet very powerful. The

idea is that when outputting eah word, wolig runs on it a postproessing funtion outword.

In addition to orreting �nal forms of letters in the middle of the word, outword takes

speial (non-Hebrew) haraters, like a \y" signifying a onsonant yod, and onverts them to

the orret Hebrew letters (in this ase, a single or double yod) aording to the rules. The

Aademia's spelling rules were diretly onverted to the form of Perl substitutions, and part

of the rule for \y" looks like this:

$word =~ s/(?<=[^éåy℄)y(?=[^éåyä℄|$)/éé/go;

$word =~ s/y/é/go; # otherwise, just one yod.

This is just a small part of the rules in outword | the full rules deal with with the

haraters Y, y, h, w, i, e, a, and are heavily ommented to explain what they mean, and

where these rules ome from, so we will not disuss more of them here.

But where do these speial haraters y, w, et., ome from? The user may use them

when entering input base-words to make sure that wolig knows whih yods and waws are

onsonants and whih are vowels, but in most ases this is unneessary: the user an input

the words in the standard niqqud-less spelling, and a funtion inword is run on these words

to try to guess where these speial haraters are appropriate. To return to the example

above, when the user enters the nouns äéø÷, inword hanges it into äyø÷. Later, the normal

inetion algorithm produes the onstrut-state form -úyø÷, and when outword is run on

that, -úééø÷ is output, just like we wanted.

wolig an also inet adjetives, marked by the ú ag. These also have an interesting

seletion of possible hints, whih we would not be able to over here. They are explained in

the beginning of the wolig.dat input �le, and also in the heavily ommented ode.

7



4 Lessons learned

Our word-list based approah to Hebrew spell-heking proved viable. Writing the word-list

generators in Perl proved an exellent idea | it it allowed us to onentrate more on ideas

and tehniques, and less on programming details, and its powerful regular expressions and

other onstruts allowed the ode to remain simple and straightforward.

The deision to write the atual front-end spell-heker, hspell in Perl, is more ques-

tionable. On one hand it allowed us to very quikly (just a few hours for the �rst version!)

reate something that worked, and atually worked surprisingly well. On the other hand, the

urrent Perl implementation is a memory hog and very slow to start (reading the word lists

into a huge hash table), and so is in the proess of being rewritten in C, and using a di�erent

searh algorithm (radix-tree instead of a hash table). Even this may not be unneessary,

when we write ode that does aÆx-ompression on our generated word lists and give it to

existing, general-purpose, spell-hekers.

Referenes

[1℄ .í"ùú ,ïåîã÷à .äîéøæ éîéùøúá ìòå�ä úééèð .ïðøåà éæåò

[2℄ .1995 .äååää ïåìéî .øåùéî éëãøîå èäá äðùåù

[3℄ .2000 .æëøîä éøáòä ïåìîä .ïùåù-ïáà íäøáà

[4℄ .1942 ,ñî ïáåàø .úéøáòä ïåùìä ÷åã÷ã .ïéìé ãåã

[5℄ .1953 ,ñî ïáåàø .íìùä íéìò�ä çåì .éì÷øá ìåàù

[6℄ .1960 ,ñî ïáåàø .íìùä úåîùä çåì .éì÷øá ìåàù

[7℄ Choueka et al. Rav milim. http://www.ravmilim.o.il/.

[8℄ Goe� Kuennig et al. International ispell.

http://fmg-www.s.ula.edu/fmg-members/geoff/ispell.html.

[9℄ Kevin Atkinson et al. Gnu aspell.

http://aspell.soureforge.net/.

[10℄ Linus Torvalds et al. The Linux kernel. http://www.kernel.org/.

[11℄ Nadav Har'El. Ivrix projet | all for partiipation.

http://www.ivrix.org.il/announements/1.html, June 1999.

[12℄ Rihard Stallman. Initial announement | Gnu projet.

http://www.fsf.org/gnu/initial-announement.html,

January 1984.

8


