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ABSTRACT
Virtualization has gained increasing attention in the recent
High Performance Computing (HPC) development. While
HPC provides scalability and computing performance, HPC
in the cloud benefits in addition from the agility and flexibil-
ity that virtualization brings. One of the major challenges
of HPC in virtualized environments is RDMA virtualiza-
tion. Existing implementations of RDMA virtualization fo-
cused on supporting VMs running Linux. However, HPC
workloads rarely need a full-blown Linux OS. Compared
to traditional Linux OS, emerging Library OSes, such as
OSv, are becoming popular choices as they provide efficient,
portable and lightweight cloud images. To enable virtualized
RDMA for lightweight library OSes, drivers and interfaces
must be re-designed to accommodate the underlying virtual
devices. In this paper we present a novel design, the virtio-
rdma driver for OSv, which aims to provide RDMA para-
virtualization for lightweight library OS. We compare this
new design with existing implementations for Linux, and an-
alyze the advantages of virtio-rdma’s architecture, its ease of
migration to different operating systems, and the potential
for performance improvement. We also propose a solution
for integrating this para-virtualized driver into HPC plat-
forms, enabling HPC application users to deploy their use
cases smoothly in a virtualized HPC environment.

ı̈ż£

1. INTRODUCTION
Para-virtualization has been commonly used in virtual-

ized environments to improve system efficiency and to op-
timize management workloads. In the era of High Perfor-
mance Computing (HPC) and Big Data use cases, cloud
providers and HPC centers focus more on developing para-
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virtualization solutions of fast and efficient I/O. Due to the
nature of high bandwidth, low latency and kernel bypass,
Remote Direct Memory Access (RDMA) [6] interconnects
play an important role for the I/O efficiency, and it has been
widely deployed in HPC and data centers as an I/O perfor-
mance booster. To benefit from these RDMA advantages
in virtualized HPC environment, network communication
supporting InfiniBand and RDMA over Converged Ethernet
(RoCE) [5] must be enabled for the underlying virtualized
devices.

There are a few existing solutions for RDMA virtualiza-
tion, e.g. vRDMA [1] from VMware and HyV [2],a hybrid
I/O virtualization framework for RDMA-capable network
interfaces, from IBM. However, none of them is applica-
ble for virtualization on HPC. vRDMA is only available for
VMware ESXi guest, and it is not open source based and not
free. HyV supports only for Linux kernel 3.13, and it relies
heavily on Linux kernel drivers, which tightly couples Linux
host and guest, excluding the usage of lightweight library
OSes [9].

To enable such communications for virtualized devices
with OSv, a lightweight, fast and simple library OS for
Cloud, we designed a new para-virtualized frontend driver,
virtio-rdma, for RDMA-capable fabrics. This solution aims
to disrupt the overhead barrier preventing HPC Cloud adop-
tion, enable HPC applications to run in virtual machines
with a performance comparable to bare metal, and bring
all the benefits from the Cloud. The virtio-rdma frontend
driver is designed to support also shared memory communi-
cation for the virtual machines (VM) on the same host. By
switching the protocols automatically in virtio-rdma, user
application uses only the standard RDMA API to accom-
plish both inter-host and intra-host communications.

On the other hand, our design also includes a solution to
use OSv and virtio-rdma in HPC environment. By extend-
ing Torque [3], necessary environment settings are config-
ured to launch OSv and its components. The job submitting
procedure is the same as on a normal HPC platform, except
the job command line needs simple adoptions.

This paper is structured as follows: section 2 introduces
the fundamental work for this design; section 3 presents the
details of the virtio-rdma, including its components, capa-
bilities and advantages; section 4 shows the basic integra-
tion solution for running HPC jobs with OSv and virtio-
rdma; section 5 concludes the paper and describes the cur-
rent states of the implementation and future plan.



2. BACKGROUNDS
In this section, we introduce several key frameworks and

projects which serve as the foundation for our RDMA para-
virtualization.

Traditional Root I/O Virtualization (SR-IOV) shares RDMA
devices between multiple virtual machines, it also introduces
high development and maintenance costs. SR-IOV is strictly
dependent on the choice of hardware devices, making mi-
gration difficult when switching to a new Network Inter-
face Controller (NIC). Unlike SR-IOV, para-virtualization
RDMA solutions are more flexible, and it uses standard
APIs therefore it can be applied with different NICs. More-
over, it allows VMs with direct access to RDMA memory
regions and avoids moving communication data around be-
tween host and guest.

2.1 Remote Direct Memory Access
Remote Direct Memory Access (RDMA) is the ability to

directly access another system’s memory without involving
the CPU on that remote system. Two major technologies
support RDMA: InfiniBand [4] and RoCE. InfiniBand pro-
vides support for native RDMA, providing highly efficient
and low latency interconnect technology. For Ethernet based
network connections, RoCE provides true RDMA semantics,
serving as an efficient Ethernet solution today.

The RDMA verbs API [7], is an abstract interface to an
RDMA enabled NIC (RNIC). It is a de facto standard soft-
ware stack defined by OpenFabrics Enterprise Distribution
(OFED). OFED stack aims to develop open-source software
for RDMA and kernel bypass applications. The interface
provides access to the RNIC queuing and memory manage-
ment resources and is normally implemented as a combina-
tion of the RNIC by the device vendors. Therefore, the level
of abstraction for our RDMA para-virtualization will be the
verbs API to be vendor independent. From an architecture
point of view, a virtualized RDMA driver consist of a back-
end driver at host side which communicates with the actual
physical device, and a frontend driver at the guest level.
The communication between frontend and backend drivers
are then carried out using Hypercalls.

2.2 OSv and virtio
Our implementation uses the OSv [8] operating system

on each VM. OSv was designed and optimized specifically
for running a single application on a virtual machine in the
cloud. We note that the modern cloud provides features,
such as isolation, hardware abstraction, and management,
which were traditionally provided by operating systems. By
not duplicating these features, OSv is simpler, smaller and
faster than traditional operating systems such as Linux, and
helps reduce the overhead of virtualization. It is basically
derived from FreeBSD and has been largely re-implemented
under C++11 standard. Each VM has a single copy of OSv,
and each VM runs a single application.

OSv uses a single address space for the kernel and a sin-
gle application’s threads, and has been considered a library
OS [9] or more recently, a unikernel [10]. By using the same
page tables for all threads and the kernel, context switches
are largely reduced. But unlike some other unikernels which
support only a limited range of applications or hypervi-
sors, OSv can run on most common hypervisors (KVM,
Xen and VirtualBox), and run unmodified Linux applica-
tions; It also fully supports multi-threading, and VMs with

multiple cores. Moreover, paging and memory mapping are
supported in OSv via mmap API.

As OSv runs only in VMs, it does not need to implement
drivers for a huge variety of real hardware such as network
cards. Rather, it needs to support just a few para-virtual de-
vices provided by the hypervisor. The KVM hypervisor uses
the virtio [11] protocol as a framework for all low-overhead
guest I/O; The the para-virtual network driver (virtio-net)
and disk driver (virtio-blk) are implemented using this proto-
col. With virtio, the performance-critical data path has min-
imal overheads such as guest-host context switches, while
the host retains full control over the management of the de-
vice.

The present work adds a new driver to OSv, virtio-rdma.
This uses the same virtio protocol to allow the guest to ef-
ficiently use the host’s hardware RDMA capabilities with
minimal overheads (such as guest-host context switches) while
still giving the host full control with whom each guest can
communicate.

2.3 Torque
Torque [3] is a portable batch system, which is used in

many HPC platforms, e.g. clusters at High Performance
Computing Center Stuttgart (HLRS). It queues, schedules
and executes compute jobs inside clusters.

In order to execute the same jobs inside VMs, Torque has
to be extended and modified to set up suitable environment
for starting the guest OS and initializing the

drivers that to be loaded for running the jobs.

3. THE NEW PARA-VIRTUALIZATION DE-
SIGN

In this section, we describe the new virtio-rdma design
comparing with the existing designs, how it is capable to
work for OSv and several advanced features. Our new design
is based on HyV, adapting and extending it where needed.
It makes extensive use of hypercalls, to facilitate direct com-
munication between guest and host.

The general idea of the design architecture is shown in
Figure 1. The guest application uses socket or RDMA. The
virtio-rdma frontend driver will decide which communica-
tion protocol to be used based on the location of the peers.
For example, the communication between VMs on the same
host will use shared memory as a short cut for better perfor-
mance. The communication between VMs on remote host
will use the virtual RDMA path.

3.1 Frontend Driver
Theoretically, there are several different possible design

schemes for RDMA para-virtualization frontend driver. It
can be implemented in different layers of the guest OS, i.e.
drivers in guest user space, providers in guest kernel space
or both.

HyV [2] follows the rules of using the OFED user and
kernel modules as is, and replacing a few kernel modules
with its own virtio drivers in the guest kernel space. As
shown in Figure 2, we present an example of querying de-
vice verb call showing the differences between the standard
path and the HyV path. The libibverbs library exposes the
verbs API to the application. The libmlx4 library is the
device provider in the user space, which is also known as
a plugin to libibverbs library for Mellanox devices. For dif-
ferent RDMA devices, other plugin may be loaded. The
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Figure 1: Architecture overview of virtio-rdma.
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Figure 2: Workflow of calling ibv query device function us-
ing HyV.

libmlx4 library provides necessary hardware information to
prepare the verb command in libibverbs library. The uverbs
kernel module exposes a uverbs device to the user space,
which handles the request command written by the reg-
istered clients. The uverbs kernel module transforms the
command to the kernel context and passes it to the lower
level kernel module, i.e. ib core, mlx4 core and mlx4 ib, to
perform the real hardware operation. HyV replaces lx4 core
and mlx4 ib kernel modules with its own virtio drivers, i.e.
virtio hyv and virtmlx4 ib, to send hypercalls to the host in-
stead of manipulating the real hardware. The corresponding
host driver (vhost hyv) handles the request and perform the
actual hardware operation with the local OFED support.

The HyV guest drivers abstract the kernel verb calls that
are able to work with OFED kernel modules, thus it highly
relies on several unmodified OFED modules. When it comes
to a library OS like OSv, implementing the same design be-
come very difficult and even impossible due to the lack of
OFED support. A library OS normally has only the min-
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Figure 3: Workflow of calling ibv query device function us-
ing virtio-rdma.

imum set of libraries that are required to support the tar-
geting application, and there have no available support of
OFED drivers for OSv or any other library OSes. Sup-
porting the original HyV on OSv will involve extra work of
porting the OFED modules and additional FreeBSD kernel
implementations, which may end up to porting most of the
FreeBSD kernel to OSv.

However, implementing similar frontend drivers as HyV
on OSv is still possible with even a much simpler archi-
tecture. For a library OS, the libraries are compiled and
sealed with the application together into fixed images that
can be run directly with a hypervisor. The created images
are constructed with single address space, that the need for
transmitting data between user space and kernel space is not
necessary. This specific feature of allowing direct access to
hardware resources without context switches does not only
improve the performance, but also allows us to get rid of the
dependencies of the OFED kernel modules.

The new virtio-rdma driver is designed to work with mini-
mum support of OFED kernel providers or drivers, as shown
in Figure 3. We keep two user space libraries: libmlx4 pro-
vides the basic hardware information, e.g. vendor ID, de-
vice ID and hardware specific parameter format; libibverbs
exposes the verbs API to the user application, and compose
and send the hypercall message to the host driver. Both of
them have been simplified: only the necessary fundamental
support is kept; the available implementation in OSv has
higher priority to be reused and to replace the OFED im-
plementation.

At moment virtio-rdma supports only InfiniBand devices
by dynamically loading libmlx4 plugin. But this can be ex-
tended by supporting more device providers in the guest,
and replace libmlx4 at runtime.

3.2 Backend Driver
On the host side, we take the advantage of using HyV

vhost driver, and the communication contains the same data
structure as HyV uses. The work on the host side involves
only porting the HyV host drivers to the targeting Linux
version 1. The new frontend driver provides the similar
hypercall functionality as HyV, but with entirely new im-
plementation based on the OSv implementation, which is
mostly C++11 standard based and the virtio API is defined

1HyV was initially implemented for Linux Kernel version
3.13. Our project is targeting 3.18 for the host OS.



Kernel Command Buffer

User Command Buffer response

response payload

payload driver_data

driver_data

RDMA udata

cmd hdr

*inbuf *outbuf inlen outlen

Figure 4: Context switch: command buffer and udata.

differently as on Linux and FreeBSD.

3.3 Context Switch
The most significant buffer that requires frequent user to

kernel switch is the RDMA command buffer, which con-
tains a command header, response buffer, payload buffer and
driver data. Normally, when calling a verbs API from user
space, a user command buffer is initialilzed in libibverbs and
copied to the kernel provider, which creates a udata struc-
ture based on the response and payload buffers. The udata
is then pushed to the RDMA kernel call. After the call is
finished, the kernel provider copies udata back to user space.
HyV doesn’t change this process on the Linux guest.

In order to be compatible with HyV backend driver for
using virtio-rdma, the hypercall parameters, especially the
user command buffer, have to be converted to the kernel
format. As OSv uses single address space implementation,
we are able to avoid many context switches for handling the
RDMA command buffer, by diretlly mapping udata into user
command buffer, as shown in Figure 4.

As we directly map the kernel objects to the user space
in OSv, no kernel provider will be required, except a few
OFED core definitions for handling the kernel objects such
as udata. This also decreases the number of dependencies
and also the number of library calls. Figure 3 shows the same
example using virtio-rdma architecture. Instead of sending
the uverbs command to OFED kernel drivers, it does the
hypercalls directly with the help of virtio-rdma. The unnec-
essary libraries have been eliminated, which saves up to 5
library calls per verb command.

3.4 RDMA Memory Mapping
The RDMA memory regions, like queue pairs, completion

queues and work requests, are directly shared between the
guest and the host, and the InfiniBand hardware is able
to operate on them via DMA. This is the fundamental rule
followed by both Hyv and virtio-rdma to accelerate the data
path and off-load the CPU.

When using Hyv guest driver with Linux, the kernel will
assign memory with contiguous virtual address but poten-
tially non-contiguous regions in physical space, as shown in
Figure 5a. The guest driver needs to parse the physical ad-
dress and save the starting physical address, offset, and size
of each contiguous region (chunk) in a mapping list. The
list will be passed to the host driver, where each chunk will
be translated back to the host physical address space and
then mapped with the InfiniBand hardware. At the end,
the backend driver holds a contiguous virtual address of the
same memory region.

However, for OSv, the core memory allocator works differ-
ently as on Linux. The allocated memory is always contigu-
ous in both virtual and physical address spaces (Figure 5b).
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Figure 5: Comparison of memory mapping mechanisms be-
tween Hyv and virtio-rdma.

The memory translation is then made simpler: the guest
driver takes care of the offsets in the first page and last
page (all memory in between should be already contiguous
and page aligned); it prepares the mapping list with phys-
ical memory of each chunk and pass them to the host; the
backend driver will still map the guest memory into non-
contiguous pages as it required.

The memory mapping process in virtio-rdma saves the
effort of retrieving allocated pages of the the memory region,
and finding contiguous pages by traversing and comparing
page addresses.

3.5 Shared Memory Support
In this new design, virtio-rdma is capable for inter-host

communication across the host through the hypercall path,
it is also designed to support intra-host communication on
the same host by supporting shared memory protocol. The
VM and its application have no knowledge about the net-
work topology, but VMs on the same host have the same
RDMA device handle. Whether the communication should
use shared memory or not is decided by comparing the de-
vice handles of peers.

The shared memory module in virtio-rdma is based on
ivshmem [?], also known as Nahanni. It is implemented in
the virtio-rdma driver, and it can be dynamically loaded
when required. For example, when registering the RDMA
memory, i.e. calling ibv reg mr verb API, the same memory
region will be expose to be shared to other VMs on the same
host by the shared memory module. Only if the communica-
tion peers has the same device handle, i.e. on the same host,
the shared memory will be used for transmitting the data.
The access permission is also protected by the RDMA com-
munication rules, e.g. protect domain. For example, when
calling ibv post send to post send to the VM on the same
host

”
we do not go futher with the RDMA stack, but rather

use the implemented shared memory functions, which still
follows the RDMA scenario: update the send request; tag
the access permission of the send buffer in the queue pair to
the other VM using the shared memory functions; update
the completion queue by the frontend driver.

3.6 Support for socket
The purpose of supporting for socket in virtio-rdma is

to accelerate the socket communication using the internel
protocol, The virtio-rdma frontend driver needs to expose
socket API to the guest application, and replace the TCP
stack by virtual RDMA or shared memory. Two frameworks,
rsocket [?] and libvma [?] have been evaluated and will be
taken as the foundation of this work.
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3.7 Improvement
One alternative and advanced way of doing the hyper-

calls in virtio-rdma is to compose hypercall message using
the user context, which does not need the context switcher
and OFED core definitions. However, this requires several
changes on the host side, as shown in Figure 6: the backend
driver should know about the user verbs, i.e. replacing the
kernel verbs abstraction with user verbs API; the backend
driver needs to work in user space. The key for this solution
is vhost-user [13]. Converting the hypercalls with user verbs
may simplify the design of virtio-rdma by omitting the user
to kernel context switch and the OFED core definitions sup-
port. On the host side, it requires additional work to adjust
vhost driver with vhost-user implementation.

4. HPC INTEGRATION
Our ultimate goal is to integrate virtio-rdma solution into

a high performance cloud system, allowing for optimized net-
work I/O performance. To boot a VM on a physical node
in an HPC environment, the batch system requires certain
adaptions and extensions. In this section, we describe the
modification that needs to be carried out with resource man-
ager and batch scheduler Torque, in order to run a job on a
HPC system with virtio-rdma support.

Compared to traditional bare metal execution, a virtual-
ized batch job’s lifecyle is comprised the following:

• During the setup phase, the prologue [?] script gen-
erates metadata for customizing the VMs during boot
by the help of cloud-init [15]. It also installs missing
packages, creates the user account, and mounts shared
file-systems available on the physical nodes. Further,
the prologue script sets up the virtio-rdma and waits
for the VMs to become available via SSH.

• Job execution is wrapped by another script that pre-
pares the VM’s environment variables for the applica-
tions. After preparing the VMs via SSH, the user job
script is executed in the first virtual guest.

• In the tear down phase of a job’s lifecycle, the epi-
logue [?] script cleans up all the instantiated VMs,
including their virtio-rdma configuration.

The proposed workflow is completely transparent to the
user, and carries out the same procedure for both jobs on

VM and on bare metal node. Moreover, it skips the load-
ing of extra modules, because in a virtualized environments
applications images are packaged with all necessary depen-
dencies.

5. CONCLUSION AND FUTURE WORK
In this paper, we present a design of a lightweight para-

virtualized RDMA solution, called virtio-rdma, that imple-
ments a new frontend driver compatible with the HyV host
driver with more advanced features, for example simple con-
text switch and shared memory support. It is designed in
a much simpler way than the original HyV architecture,
due to the characteristics of OSv on the guest driver side.
Our virtio-rdma approach supports OSv in its current state
of development. However, we simplified the dependencies of
OFED kernel modules and minimized support of OFED user
libraries to provide API linkage to user application, allowing
for future adaptation in any similar library OS unikernels or
even Linux.

Furthermore, we proposed a concrete solution of adopting
virtio-rdma in HPC environments with an extended Torque,
allowing end-users to easily explore our para-virtualization
solution without any prior domain knowledge.

Future work comprises the plan to evaluate and compare
the I/O performance of the proposed implementation, on the
extended virtualized HPC environments, to the traditional
bare metal execution. ı̈ż£
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