Gauss Formula for the Julian Date of Passover

Zvi Har'El
Department of Mathematics
Technion - Israel Institute of Technology
Haifa 32000, Israel
E - Mail: rl@math.technion.ac.il

1. Definitions.

Nisan origin is the instant occurring before the beginning of 1 Nisan, in a time difference which is equal to the difference between the new moon, or molad, of Tishri and the beginning of 1 Tishri of the following Hebrew year.

Nisan origin of the year $1 \mathrm{AM}^{1}$ is 29 Adar, 14 hours, because molad Tishri of the year 2 AM was on Friday, 14 hours, and 1 Tishri was a Saturday.

March origin is the instant occurring one day before the beginning of 1 March. Thus, the March date of a given instant will be in fact the time difference between that instant and March origin.

Note that Nisan origin of the year 1 AM is 33 March, 14 hours, because the Julian date of 1 Nisan 1 AM was 3 April, i.e., 34 March. Here we assume the Julian day begins in the previous evening (at 6 PM), as the Hebrew day does, to simplify the discussion.

Let $H(A)$ denote the Nisan origin and $J(A)$ the March origin of the Hebrew year A. Let T be Nisan origin of the year 1 AM , in March days:

$$
\begin{equation*}
T=H(1)-J(1)=33: 14: 0=\frac{403}{12} . \tag{1}
\end{equation*}
$$

Time intervals are given in the Talmudic units: An hour is divided into 1080 parts, so that d days, h hours and p parts are written as $d: h: p=(p / 1080+h) / 24+d$. Let K be $1 / 19$ of the length of the lunar month:

$$
K=\frac{29: 12: 793}{19}=\frac{765433}{492480}
$$

A cycle of 19 consecutive lunar years contains 235 lunar months, arranged in 12 common years containing 12 months each, and 7 leap years, containing 13 month each. Conventionally, leap years are the 3rd, 6th, 8th, 11th, 14th, 17th, 19th in each cycle. Let L be the average solar excess, i.e., difference in length between a solar year and an average lunar year:

$$
L=365: 6: 0-235 K=\frac{0: 1: 485}{19}=\frac{313}{98496} .
$$

Note: Using decimals,

$$
\begin{gathered}
T \approx 33.58333333 \\
K \approx 1.554241797 \\
L \approx 0.003177794022
\end{gathered}
$$

[^0]
2. Nisan origin.

The length of a leap lunar year is $13 \cdot 19 K=247 K$, while the length of a common lunar year is $12 \cdot 19 K=228 K$. Subtracting these quantities from $L+235 K$, the length of the solar year, we get the common solar excess, $L+7 K$, and the (negative) leap solar excess, $L-12 K$.

From these observations we get

$$
H(A)-H(1)=365: 6: 0(A-1)-\Delta(A)
$$

where $\Delta(A)$ is the cumulative solar excess. It is given in the following table, with leap years marked by an asterisk:

A	$\Delta(A)$
1	0
2	$L+7 K$
$* 3$	$2 L-5 K$
4	$3 L+2 K$
5	$4 L+9 K$
$* 6$	$5 L-3 K$
7	$6 L+4 K$
$* 8$	$7 L-8 K$
9	$8 L-K$
10	$9 L+6 K$
$* 11$	$10 L-6 K$
12	$11 L+K$
13	$12 L+8 K$
$* 14$	$13 L-4 K$
15	$14 L+3 K$
16	$15 L+10 K$
$* 17$	$16 L-2 K$
18	$17 L+5 K$
$* 19$	$18 L-7 K$
20	$19 L$

Each year we add $L+7 K$, unless the year is leap, when we add $L-12 K$ (since we compute in effect the next molad Tishri). In this way, the coefficient of L is incremented continuously, while the coefficient of K is increased by 7 each time, until a moment when it becomes 11 or higher, when it is decreased by 19 . Since the lowest possible value of this coefficient is -8 , and this value is obtained at $A=8(\bmod 19)$, we get that the running value is $-8+(7(A-8)) \mid 19$, where $x \mid k$ is $x-k[x / k]$. Therefore, the coefficient of K is

$$
\begin{aligned}
-8+(7(A-8)) \mid 19 & =-8+(7 A+1) \mid 19 \\
& =-8+(18-(18-(7 A+1)) \mid 19) \\
& =10-(17-7 A) \mid 19 \\
& =10-(12 A+17) \mid 19
\end{aligned}
$$

(using the identity $x|k=(k-1)-((k-1)-x)| k$). Denoting

$$
a=(12 A+17) \mid 19,
$$

we get

$$
\Delta(A)=(10-a) K+(A-1) L,
$$

or finally

$$
\begin{equation*}
H(A)-H(1)=(A-1) 365: 6: 0+(a-10) K-(A-1) L . \tag{2}
\end{equation*}
$$

As an added bonus, we can divide the cycle years into 4 categories, according to the value of the coefficient of K in the cumulative solar excess:

$10-a$	a	$A-1$	A	$A+1$
$-8 \ldots-2$	$18 \ldots 12$	common	leap	common
$-1 \ldots 3$	$11 \ldots 7$	leap	common	common
$4 \ldots 5$	$6 \ldots 5$	leap	common	leap
$6 \ldots 10$	$4 \ldots 0$	common	common	leap

3. March origin.

Set

$$
J(A)-J(1)=(A-1) 365+\delta(A)
$$

where $\delta(A)$ is the number of Julian intercalary days (29 February) between 1 March 1 am and 1 March of the year A. Since the Hebrew year 1 AM corresponds ${ }^{2}$ to the Julian year 3760 BCE, or -3759 CE which gives a remainder of 1 when divided by 4 , we obtain that the year A will contain a intercalary day if and only if $A \equiv 0(\bmod 4)$. Thus $\delta(A)=[A / 4]$, or, denoting

$$
b=A \mid 4,
$$

we get

$$
\delta(A)=A / 4-b / 4 .
$$

Therefore

$$
J(A)-J(1)=(A-1) 365+A / 4-b / 4,
$$

or, finally

$$
\begin{equation*}
J(A)-J(1)=(A-1) 365: 6: 0-b / 4+0: 6: 0 . \tag{3}
\end{equation*}
$$

4. March date of Passover.

Subtracting (3) from (2) and using (1), we get

$$
H(A)-J(A)=T+(a-10) K-(A-1) L+b / 4-0: 6: 0,
$$

or

$$
H(A)-J(A)=(T-10 K+L)+a K-A L+b / 4-0: 6: 0 .
$$

This is the March date of Nisan origin of the Hebrew year A. We add 6 hours to implement the rule that if molad Tishri is at noon or later ${ }^{3}, 1$ Tishri is postponed to the following day. Finally we add 14 days to get the March date of 15 Nisan.

Setting

$$
m_{0}=T-10 K+L+14=\frac{3156215}{98496},
$$

we get

$$
M+m=m_{0}+a K-A L+b / 4,
$$

where M is the integral part and m the fractional part of the right hand side. Unless further exceptions apply (see below), M is the Julian March date of the first day of Passover of the Hebrew year A.

Note: Using decimals,

$$
m_{0} \approx 32.04409316
$$

[^1]
5. Week day of Passover.

Calculating modulo 7, we obtain:

$$
\begin{aligned}
J(A)-J(1) & \equiv(A-1) 365: 6: 0-b / 4+0: 6: 0 \\
& \equiv(A-1) 1: 6: 0-b / 4+0: 6: 0 \\
& \equiv 5 A / 4-b / 4-1 \\
& \equiv A-1+(A-b) / 4 \\
& \equiv A-1+8(A-b) / 4 \\
& \equiv A-1+2(A-b) \\
& \equiv 3 A-2 b-1 \\
& \equiv 3 A+5 b-1(\bmod 7)
\end{aligned}
$$

Since March origin 1 AM was on Friday, we get for M March of the Hebrew year A,

$$
c=(M+3 A+5 b+5) \mid 7 .
$$

c is the day in the week of M March, with $c=0$ for Saturday.

6. Exceptions.

In the discussion above, we assumed that 1 Tishri is the day on which molad Tishri has taken place, and established that the Julian date of 15 Nisan is M March. We already mentioned one exception. If molad Tishri is at noon or later, 1 Tishri is postponed to the following day. We implemented this exception by adding 6 hours to Nisan origin. However, there are three more exceptions.

The second exception is the rule that 1 Tishri is excluded from being a Sunday, Wednesday or Friday ${ }^{4}$, and is postponed to the following day. To implement this rule, we notice that 15 Nisan and the following 1 Tishri are 152 days apart, i. e., 22 weeks minus 2 days. Thus, 15 Nisan is excluded from being a Friday, Monday of Wednesday, respectively.

The last two exceptions are derived from the previous one, and from a restriction on the length of the Hebrew year. As we have seen, the length of the common lunar year is $12 \cdot 19 \mathrm{~K}=354: 8: 876$ days, and the length of the leap lunar year is $13 \cdot 19 K=383: 21: 589$ days. Of course, a calendar year must have an integral number of days. Thus, a common Hebrew year has 353,354 or 355 days ${ }^{5}$, while a leap Hebrew year has 383,384 or 385 days 6.

The third exception follows from restricting the common year to have at most 355 days. Molad Tishri of a common year $A+1$ and its successor are $354: 8: 876$ days apart, i. e., 51 full weeks minus 2:15:204 days. Thus, if molad Tishri of $A+1$, after being moved 6 hours ahead, is on Tuesday, 15 hours and 204 parts or later ${ }^{7}$, its successor is on Sunday. Then, 1 Tishri $A+2$ is a Monday, and if 1 Tishri $A+1$ is not postponed from Tuesday (to Thursday, as Wednesday is excluded), the year $A+1$ will have 356 days.

Similarly, the fourth exception follows from restricting the leap year to have at least 383 days. Molad Tishri of a leap year A and its successor are 383:21:589 days apart, i. e., 54 full weeks plus 5:21:589 days. Thus, if molad Tishri of $A+1$, after being moved 6 hours ahead, is on Monday, 21 hours and 589 parts or later ${ }^{8}$, its predecessor is on Wednesday. Then, 1 Tishri A is a Thursday, and if 1 Tishri $A+1$ is not

[^2]postponed from Monday (to Tuesday), the year A will have 382 days.
To implement the last two exceptions, we notice that that 1 Tishri $A+1$ being a Monday or Tuesday implies that 15 Nisan A is a Saturday or Sunday, respectively. Also, if we consider the table in Section 2, we notice that A is leap if $a \geq 12$ and $A+1$ is common if $a \geq 7$.

Thus, setting

$$
\begin{aligned}
& m_{1}=(13 \cdot 19 K) \mid 1=0: 21: 589=\frac{23269}{25920} \\
& m_{2}=1-(12 \cdot 19 K) \mid 1=0: 15: 204=\frac{1367}{2160}
\end{aligned}
$$

we find that the Julian date the first day of Passover is:

- $\quad M+1$ March, if $c=0, a \geq 12$ and $m \geq m_{1}$,
- $\quad M+2$ March, if $c=1, a \geq 7$ and $m \geq m_{2}$,
- $\quad M+1$ March, if $c=2,4$ or 6 ,
- $\quad M$ March, otherwise.

Note: Using decimals,

$$
\begin{aligned}
m_{1} & \approx 0.897723765 \\
m_{2} & \approx 0.63287037
\end{aligned}
$$

7. References.

1. Adler, Cyrus, Calendar, History of, in: Singer, Isidore (ed.), The Jewish Encyclopedia, Vol. 3, pp. 498-500. Ktav Publishing House, Inc., New York, 1901.
2. Dershowitz, N. and Reingold, E. M., Calendrical Calculations, Software - Practice and Experience, 20 (1990), 899-928.
3. Friedländer, Michael, Calendar, in: Singer, Isidore (ed.), The Jewish Encyclopedia, Vol. 3, pp. 501-508. Ktav Publishing House, Inc., New York, 1901.
4. Gauss, Karl Friedrich, Berechnung Des Jüdishen Osterfestes, Montaliche Correspondenz zur Beförderung der Erd- und Himmels-Kunde, herausgegeben vom Freiherrn von Zach. Mai 1802. Werke, Vol 6, pp. 80-81.
5. Gauss, Karl Friedrich, Berechnung Des Neumonds Tisri Für Jedes Jüdische Jahr A, Handschriftlische Eintragung in Christian Wolf, Elementa matheseos universae, tomus IV. - Von Gauss 1800 erworben. Werke, Vol. 11, pp. 215-218.
6. Resnikoff, Louis A., Jewish Calendar Calculations, Scripta Math., 9 (1943), 191-195.

8. Appendix: A Computer Implementation.

```
/*
* Gauss formula for Passover
*
* Arguments:
* year - Hebrew year (anno mundi)
* g - boolean flag, 0 for Julian dates, 1 for Gregorian.
* day - optional pointer to an integer,
* to return the day-of-the week.
* Return value:
* March date of the first day of Passover.
*/
```

```
/* Fundamental constants */
#define T (33. + 14. / 24.)
#define L ((1. + 485. / 1080.) / 24. / 19.)
#define K ((29. + (12. + 793. / 1080.) / 24. )/ 19.)
/* Derived constants */
#define m0 (T - 10. * K + L + 14.)
#define m1 ((21. + 589. / 1080.) / 24.) /* 13*19*K mod 1 */
#define m2 ((15. + 204. / 1080.) / 24.) /* 1 - (12*19*K mod 1) */
int
Gauss(int year, int g, int *day)
Gauss
{ int a, b, c, M;
    double m;
    a = (12 * year + 17) % 19;
    b = year % 4;
    m = m0 + K * a + b / 4. - L * year;
    if (m<0) m--;
    M = m;
    if (m < 0) m++;
    m -= M;
    switch (c = (M + 3 * year + 5 * b + 5) % 7) {
    case 0:
        if (a >= 12&& m >= m1) {
            c = 1; M++;
        }
        break;
    case 1:
        if (a >= 7 && m >= m2) {
            c = 3; M += 2;
            }
            break;
    case 2:
        c = 3; M++;
        break;
    case 4:
        c = 5; M++;
        break;
    case 6:
        c = 0; M++;
        break;
    }
    if (day) *day = c;
    if (g) /* Gregorian Calendar */
        M += (year - 3760) / 100 - (year - 3760) / 400 - 2;
    return M;
}
```


[^0]: ${ }^{1}$ anno mundi.

[^1]: ${ }^{2}$ At least, its major part containing 1 March.
 ${ }^{3}$ Molad Zaken.

[^2]: ${ }^{4}$ Adu.
 ${ }^{5} 12$ months, alternating between 30 and 29 days each, give a total of 354 days. This number may increase by adding one to the 29 days of Heshvan, or decrease by subtracting one from the 30 days of Kislev.
 ${ }^{6}$ The intercalary month, Adar Rishon, has 30 days.
 ${ }^{7}$ The molad being on Tuesday, 9 hours and 204 parts or later (Gatrad).
 ${ }^{8}$ The molad being on Monday, 15 hours and 589 parts or later (Betu Takpat).

